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Abstract
Recent progress on the anomalous scaling in models of turbulent heat and mass
transport is reviewed with the emphasis on the approach based on the field-
theoretic renormalization group (RG) and operator product expansion (OPE).
In that approach, the anomalous scaling is established as a consequence of
the existence in the corresponding field-theoretic models of an infinite number
of ‘dangerous’ composite fields (operators) with negative critical dimensions,
which are identified with the anomalous exponents. This allows one to calculate
the exponents in a systematic perturbation expansion, similar to the ε expansion
in the theory of critical phenomena. The RG and OPE approach is presented
in a self-contained way for the example of a passive scalar field (temperature,
concentration of an impurity, etc) advected by a self-similar Gaussian velocity
ensemble with vanishing correlation time, the so-called Kraichnan’s rapid-
change model, where the anomalous exponents are known up to order O(ε3).
Effects of anisotropy, compressibility and the correlation time of the velocity
field are discussed. Passive advection by non-Gaussian velocity field governed
by the stochastic Navier–Stokes equation and passively advected vector (e.g.
magnetic) fields are considered.

PACS numbers: 47.10.+g, 47.27.−i, 05.10.Cc

1. Introduction

It has become a commonplace to emphasize that theoretical understanding of turbulence
remains the last unsolved problem of classical physics. Of course, the concept of turbulence
refers to a great deal of disparate physical situations (‘almost as varied as in the realm of
life’ ([1], p 1)), and any exhaustive and ultimate ‘theory of turbulence’, of course, can hardly
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ever be established. There is, however, a classical ‘list’ of phenomena (or, rather, classes of
phenomena) that represent and illustrate the main features of turbulence: existence and stability
of solutions of hydrodynamics equations, convective turbulence, (in)stability of laminar flows
and origin of turbulence, and so on. Those topics, which are of great practical and conceptual
importance, have always remained in the focus of attention for theoreticians. One of them
is the fully developed (homogeneous, isotropic, inertial-range) hydrodynamical turbulence.
Detailed description of this concept and the bibliography of this old but still open subject can
be found in the classical monographs [1–3].

Turbulent flows that occur in various liquids or gases at very high Reynolds numbers
reveal a number of general aspects (cascades of energy or other conserved quantities,
scaling behaviour with apparently universal ‘anomalous exponents’, intermittency, statistical
conservation laws and so on), which support the hopes that those phenomena can be explained
within a self-contained and internally consistent theory. Recent developments in this area are
presented and summarized in [4].

The issue of interest is, in particular, the behaviour of the equal-time structure functions

Sn(r) ≡ 〈[θ(x) − θ(x′)]n〉, r ≡ |x − x′|, (1.1)

in the inertial range of scales: � � r � L, where � is the Kolmogorov dissipation length and
L is the integral (external) turbulence scale L. The field θ(x) ≡ θ(t, x) can be the component
of the velocity field directed along the vector x − x′, or some scalar field in the problem of
turbulent advection: temperature or entropy of the fluid, concentration of an impurity, etc. The
angle brackets 〈· · ·〉 denote the ensemble averaging, and the time argument common to all the
quantities in (1.1) is omitted.

According to the celebrated Kolmogorov–Obukhov (KO) phenomenological theory
[1–3], the structure functions in the inertial range are independent of both the external
and internal scales (the first and the second Kolmogorov hypothesis, respectively) and are
determined by the only parameter ε̄, the mean energy dissipation rate. Dimensionality
considerations then determine functions (1.1), apart from numerical coefficients, in the form

Sn(r) = cn(ε̄r)
n/3. (1.2)

The most remarkable features of developed turbulence are encoded in the single term of
intermittency. This concept has no rigorous definition within the classical probabilistic theory;
an excellent introduction can be found in [5] and chapter 8 of the book [1]. Roughly speaking,
intermittency means that statistical properties (for example, correlation or structure functions
of the turbulent velocity field) are dominated by rare spatiotemporal configurations, in which
the regions with strong turbulent activity have exotic (fractal) geometry and are embedded
into the vast regions with regular (laminar) flow.

In the turbulence, such a phenomenon is believed to be related to strong fluctuations of
the energy flux. Therefore, it leads to deviations from the predictions of the KO theory. Such
deviations, referred to as ‘anomalous’ or ‘non-dimensional’ scaling, manifest themselves in
singular (arguably power-like) dependence of correlation functions on the distances and the
integral scale L (in contradiction with the first Kolmogorov hypothesis). For functions (1.1),
they are written in the form

Sn(r) = cn(ε̄r)
n/3(r/L)qn . (1.3)

The ‘anomalous exponents’ qn are certain nontrivial and nonlinear functions of n, the order of
the structure function: the phenomenon also referred to as ‘multiscaling’.

Within the framework of numerous semi-heuristic models, the anomalous exponents are
related to statistical properties of the local dissipation rate, the fractal (Haussdorf) dimension of
structures formed by the small-scale turbulent eddies, the characteristics of nontrivial structures
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(vortex filaments) and so on; see [1–3] for a review and further references. The common
drawback of such models is that they are only loosely related to underlying hydrodynamical
equations, involve arbitrary adjusting parameters and, therefore, cannot be considered to be
the basis for construction of a systematic perturbation theory in certain small (at least formal)
expansion parameter; see e.g. the remark in [6]. Thus, serious doubts remain about the
universality of anomalous exponents and the very existence of deviations from the KO theory.

The term ‘anomalous scaling’ reminds of the critical scaling in models of equilibrium
phase transitions. In those, the field-theoretic renormalization group (RG) was successfully
employed to establish the existence of self-similar (scaling) regimes and to construct
regular perturbative calculational schemes (the famous ε expansion and its relatives) for
the corresponding exponents, scaling functions, ratios of amplitudes, etc; see e.g. [7, 8] and
references therein.

In fact, the analogy is far from exact. There is an important difference between the concepts
of critical scaling in equilibrium phase transitions and anomalous scaling in turbulence.
Formally speaking, in both the cases one deals with nontrivial powers of the distance, but
in the first case they are divided by the ultraviolet (UV) scale �, while in the second the same
role is played by the integral or infrared (IR) scale L. The aforementioned phenomenon of
multiscaling was also often opposed to critical scaling, because in the latter ‘everything is
determined by just two exponents η and ν’.

It was hoped that a close analogy can be achieved if the momentum space for turbulence
be confronted with the coordinate space for critical phenomena. This idea was expressed in
a phenomenological ‘dictionary’, where, in particular, the viscous length � (that is, the UV
scale of turbulence) was confronted with the correlation length (that is, the IR scale of critical
phenomena), while the integral scale L was confronted with the molecular length (see e.g.
[9]); hence the idea of ‘inverse’ renormalization group (see [10, 11] for a recent discussion).

Both the natural and numerical experiments suggest that the deviation from the classical
KO theory is even more strongly pronounced for passively advected scalar fields than for the
velocity field itself; see e.g. [12–19] and literature cited therein. At the same time, the problem
of passive advection appears easier tractable theoretically: even simplified models describing
the advection by a ‘synthetic’ velocity field with a given Gaussian statistics reproduce many of
the anomalous features of genuine turbulent heat or mass transport observed in experiments.
Therefore, the problem of passive scalar advection, being of practical importance in itself,
may also be viewed as a starting point in studying intermittency and anomalous scaling in the
turbulence as a whole.

Probably, the most important progress in the subject, achieved in the last decade of the
20th century, was related to a simplified model of the fully developed turbulence, known
as Kraichnan’s rapid-change model. The model, which dates back to classical studies of
Batchelor, Obukhov, Kraichnan and Kazantzev, describes a scalar quantity passively advected
by a Gaussian velocity field, decorrelated in time and self-similar in space (the latter property
mimics some features of a real turbulent velocity ensemble). The pair correlation function of
the velocity is taken in the form 〈vivj 〉 ∝ D0δ(t − t ′)k−d−ε, where k is the wave number, d
is the space dimensionality and ε is an arbitrary parameter. For the first time, the existence
of anomalous scaling was established on the basis of a microscopic model [20], and the
corresponding anomalous exponents were derived within controlled approximations [21, 22]
and a regular perturbation scheme [23]. Namely, it was shown that the inertial-range structure
functions in such a model exhibit anomalous scaling behaviour:

S2n(r) ∝ D−n
0 rn(2−ε)(r/L)�n (1.4)

(the odd functions vanish) with negative anomalous exponents �n, whose first terms of the
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expansion in ε [21] and 1/d [22] have the forms

�n = −2n(n − 1)ε/(d + 2) + O(ε2) = −2n(n − 1)ε/d + O(1/d2). (1.5)

The relation �1 = 0 is exact, in agreement with the exact solution for the pair correlator
derived in [24].

Another quantity of interest is the local dissipation rate of scalar fluctuations, E(x) =
κ0∂iθ(x)∂iθ(x), where κ0 is the diffusivity coefficient. The equal-time correlation functions
of its powers in the inertial range have the forms [21, 22]

〈En(x)Ep(x ′)〉 ∝ (r/�)−�n−�p(mr)�n+p (1.6)

with the same exponents �n from (1.5). Relations of the form (1.6) are characteristic of the
models with multifractal behaviour [25, 26].

Fortunately, that there are (at least) two alternative (or complementary) analytical
approaches to the rapid-change model. The ‘zero-mode approach’, developed in [21, 22], can
be interpreted as a realization of the well-known idea of self-consistent (bootstrap) equations,
which involve skeleton diagrams with dressed lines and dropped bare terms. Owing to special
features of the rapid-change models (linearity in the passive field and time decorrelation
of the advecting field), such equations can be written in a closed form, as certain differential
equations for the equal-time correlation functions. In this sense, the model is ‘exactly solvable’.
Although those equations cannot be solved explicitly, the nontrivial anomalous exponents (1.5)
can be extracted from the analysis of the asymptotic behaviour for (r/L) � 1 of their zero
modes (unforced solutions) in the limit ε → 0 [21] or 1/d → 0 [22].

From a more physical point of view, zero modes can be interpreted as statistical
conservation laws in the dynamics of particle clusters [27]. The concept of statistical
conservation laws appears rather general, being also confirmed by numerical simulations
of [28, 29], where the passive advection in the two-dimensional Navier–Stokes (NS) velocity
field [28] and a shell model of a passive scalar [29] were studied. This observation is rather
intriguing because in those models no closed equations for equal-time quantities can be derived
due to the fact that the advecting velocity has a finite correlation time.

The second systematic analytical approach to the rapid-change model, proposed in [23],
is based on the field-theoretic renormalization group (RG) and operator product expansion
(OPE).

To avoid possible confusion, it should be explained that in [23] and subsequent papers,
the conventional renormalization group (and not the inverse RG in the spirit of [9–11])
was employed, which is based on the standard renormalization procedure (elimination of
UV divergences). The solution proceeds in two main stages. In the first stage, the
multiplicative renormalizability of the corresponding field-theoretic model is demonstrated
and the differential RG equations for its correlation functions are obtained. The asymptotic
behaviour of the latter on their UV argument (r/�) for r � � and any fixed (r/L) is given
by IR-stable fixed points of those equations. It involves some ‘scaling functions’ of the IR
argument (r/L), whose form is not determined by the RG equations. In the second stage,
their behaviour at r � L is found from the OPE within the framework of the general solution
of the RG equations. There, the crucial role is played by the critical dimensions of various
composite fields (composite operators in quantum-field terminology) which give rise to an
infinite family of independent scaling exponents—and hence to multiscaling.

Of course, both these stages have long been known in the RG theory of critical behaviour,
where the OPE is used in the analysis of the small-(r/L) form of the scaling functions; see e.g.
[7, 8] and references therein. The distinguishing feature, specific to models of turbulence, is the
existence of composite operators with negative critical dimensions. Such operators sometimes
are termed ‘dangerous’, because their contributions to the OPE diverge at (r/L) → 0.
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In the models of critical phenomena, nontrivial composite operators always have strictly
positive dimensions, so that they only determine corrections (vanishing for (r/L) → 0) to the
leading terms (finite for (r/L) → 0) in the scaling functions (the leading terms are related to
the simplest operator unity with zero critical dimension).

The OPE and the concept of dangerous operators in the stochastic hydrodynamics were
introduced and investigated in detail in [30]; detailed discussion of the NS case can be found
in the review paper [31], the monograph [32] and chapter 6 of the book [8]. Later, the idea
of negative dimensions was repeatedly introduced in connection with the anomalous scaling
in turbulence [26], models with multifractal behaviour [25] and the phenomena related to the
Burgers equation [33, 34].

The RG analysis of [23] has shown that dangerous operators are indeed present in the
rapid-change model, and that their dimensions can be calculated systematically within a regular
perturbation expansion, similar to the famous ε expansion of the critical exponents. Owing
to the linearity of the original stochastic equations in the passive field, only finite number
of dangerous operators can contribute to any given structure function, which allows one to
identify the corresponding anomalous exponent with the critical dimension of an individual
composite operator. The actual calculations were performed to the second [23] and third
[35, 36] orders in ε (two-loop and three-loop approximations, respectively). Generalizations
to the cases of compressible [37, 38] and anisotropic [39, 40] velocity ensembles and the
vector advected field [41–45] have been obtained.

The two approaches complement each other nicely: the zero-mode technique allows
for exact (nonperturbative) solutions for the anomalous exponents related to second-order
correlation functions [22, 47–49] (they are nontrivial for passive vector fields or anisotropic
sectors for scalar fields), while the RG approach forms the basis for systematic perturbative
calculations of the higher order anomalous exponents [23, 35–38]. For the cases of anisotropic
velocity ensembles or/and passively advected vector fields, as well as advection of extended
objects, where the calculations become rather involved, all the existing results for higher order
correlation functions were derived only by means of the RG approach and only to the leading
order in ε [39, 41–46].

Detailed discussion of the zero-mode approach, the concept of statistical conservation
laws, Lagrangian description of the passive advection and detailed bibliography of the subject
can be found in the review paper [19] and the lectures [50]. In the present paper, we focus
on the RG and OPE approach to the problem. In section 2, we give a brief but self-contained
exposition of this approach for the simplest example: passive scalar field advected by the
incompressible, isotropic and homogeneous Kraichnan’s velocity ensemble.

Existence of exact solutions, regular perturbation schemes and accurate numerical
simulations allows one to discuss, for the example of the rapid-change model and its relatives,
the issues that are interesting within the general context of fully developed turbulence:
universality and saturation of anomalous exponents, effects of compressibility, anisotropy and
pressure, persistence of the large-scale anisotropy and hierarchy of anisotropic contributions,
convergence properties and nature of the ε expansions, and so on. These issues are discussed
in section 3.

Besides the calculational efficiency, an important advantage of the RG approach is its
relative universality: it is not bound to the aforementioned ‘solvability’ of the rapid-change
model and can also be applied to the case of finite correlation time [51–54] or non-Gaussian
advecting field governed by the stochastic Navier–Stokes equation [51, 55]. These issues are
discussed in section 4. Turbulent advection of vector (e.g. magnetic) fields is considered in
section 5. The lessons we have learned from the RG analysis of the passive advection and
open problems are briefly discussed in section 6.
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2. Anomalous scaling in the Obukhov–Kraichnan model

The turbulent advection of a passive scalar field θ(x) ≡ θ(t, x) is described by the stochastic
equation

∇t θ = κ0∂
2θ + f, ∇t ≡ ∂t + vi∂i, (2.1)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, κ0 is the molecular diffusivity coefficient, ∂2 is the Laplace
operator, v(x) ≡ {vi(x)} is the transverse (owing to the incompressibility condition ∂ivi = 0)
velocity field and f ≡ f (x) is an artificial Gaussian scalar noise with zero mean and correlation
function

〈f (x)f (x ′)〉 = δ(t − t ′)C(r/L), r = |r|, r = x − x′. (2.2)

The parameter L is an integral scale related to the noise and C(r/L) is some function finite as
(r/L) → 0 (with no loss of generality, we will set C(0) = 1).

In the real problem, the field v(x) satisfies the Navier–Stokes equation. In the rapid-change
model, it obeys a Gaussian distribution with zero mean and correlation function

〈vi(x)vj (x
′)〉 = D0δ(t − t ′)

∫
k>m

dk
(2π)d

Pij (k) exp[ik · (x − x′)], (2.3)

where Pij (k) = δij − kikj /k2 is the transverse projector, k ≡ |k|,D0 > 0 is an amplitude
factor, d is the dimensionality of the x space and 0 < ε < 2 is a parameter with the real
(‘Kolmogorov’) value ε = 4/3.

The IR regularization is provided by the cut-off in the integral (2.3) from below at k = m,
where m ≡ 1/L is the reciprocal of the integral scale L (for simplicity, we do not distinguish
the IR scales related to the noise and the velocity). The anomalous exponents are independent
of the precise form of the IR regularization; the sharp cut-off is the most convenient choice
from the calculational viewpoints (another possibility is the replacement k2 → k2 + m2 in the
denominator of (2.3)). The relations

D0/κ0 = g0 = �ε (2.4)

introduce the coupling constant g0 (the formal expansion parameter in the ordinary perturbation
theory) and the characteristic UV momentum scale � ≡ 1/�.

2.1. Field-theoretic formulation

The stochastic problem (2.1)–(2.3) is equivalent to the field-theoretical model of the set of
three fields  ≡ {θ, θ ′, v} with action functional

S() = θ ′Dθθ
′/2 + θ ′[−∂tθ − (vi∂i)θ + κ0∂

2θ ] − vD−1
v v/2. (2.5)

The first four terms in (2.5) represent the De Dominicis–Janssen-type action [56] for the
stochastic problem (2.1), (2.2) at fixed v, while the last term corresponds to the Gaussian
averaging over v with correlator (2.3). Here Dθ and Dv are the correlators (2.2) and (2.3),
respectively, and the required integrations over x = (t, x) and summations over the vector
indices are implied.

This formulation means that statistical averages of random quantities in the original
stochastic problem (2.1)–(2.3) coincide with the Green functions of the field-theoretic model
with action (2.5), given by functional averages with the weight expS().

The action (2.5) corresponds to a standard Feynman diagrammatic technique with the
triple vertex −θ ′(vi∂i)θ and bare propagators (in the momentum–frequency representation)

〈θθ ′〉0 = 〈θ ′θ〉∗0 = (−iω + κ0k
2)−1, 〈θ ′θ ′〉0 = 0,

〈θθ〉0 = C(k)
(
ω2 + κ2

0 k4
)−1

,
(2.6)
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Table 1. Canonical dimensions of the fields and parameters in the model (2.5).

F θ θ ′ v κ, κ0 m, µ,� g0 g

dk
F 0 d −1 −2 1 ε 0

dω
F −1/2 1/2 1 1 0 0 0

dF −1 d + 1 1 0 1 ε 0

where C(k) is the Fourier transform of the function C(r/L) in (2.2) and the bare propagator
〈vv〉0 is given by equation (2.3). The role of the coupling constant in the perturbation theory
is played by the parameter g0 defined in (2.4).

2.2. UV singularities and renormalization

It is well known that the analysis of UV divergences is based on the analysis of canonical
dimensions (‘power counting’); see e.g. [7, 8]. Dynamical models of the type (2.5), in contrast
to static models, have two scales, i.e., the canonical dimension of some quantity F (a field or
a parameter in the action functional) is described by two numbers, the momentum dimension
dk

F and the frequency dimension dω
F . They are determined so that [F ] ∼ [L]−dk

F [T ]−dω
F , where

L is the length scale and T is the time scale. The dimensions are found from the obvious
normalization conditions dk

k = −dk
x = 1, dω

k = dω
x = 0, dk

ω = dk
t = 0, dω

ω = −dω
t = 1, and

from the requirement that each term of the action functional be dimensionless (with respect
to the momentum and frequency dimensions separately). Then, based on dk

F and dω
F , one can

introduce the total canonical dimension dF = dk
F + 2dω

F (in the free theory, ∂t ∝ ∂2), which
plays in the theory of renormalization of dynamical models the same role as the conventional
(momentum) dimension does in static problems. Renormalization of dynamic models is
discussed in chapter 5 of [8] in detail.

The dimensions for the model (2.5) are given in table 1, including renormalized
parameters, which will be introduced later on. From table 1, it follows that the model is
logarithmic (the coupling constant g0 is dimensionless) at ε = 0, so that the UV divergences
in the correlation functions have the form of the poles in ε.

The total canonical dimension of an arbitrary 1-irreducible Green function � =
〈 · · · 〉1-ir is given by the relation d� = dk

� + 2dω
� = d + 2 − Nd, where N =

{Nθ,Nθ ′ , Nv} are the numbers of corresponding fields entering into the function �, and the
summation over all types of the fields is implied. The total dimension d� is the formal index
of the UV divergence. Superficial UV divergences, whose removal requires counterterms, can
be present only in those functions � for which d� is a non-negative integer.

Analysis of the divergences should be based on the following auxiliary considerations:

(1) From the explicit form of the vertex and bare propagators in the model (2.5), it follows that
Nθ ′ − Nθ = 2N0 for any 1-irreducible Green function, where N0 � 0 is the total number
of the bare propagators 〈θθ〉0 entering into the function (obviously, no diagrams with
N0 < 0 can be constructed). Therefore, the difference Nθ ′ − Nθ is an even non-negative
integer for any nonvanishing function.

(2) Diagrams for some Green functions contain closed circuits of retarded propagators 〈θθ ′〉0

and also vanish. These are, for example, all the 1-irreducible functions with Nθ ′ = 0.
(3) If for some reason a number of external momenta occur as an overall factor in all the

diagrams of a given Green function, the real index of divergence d ′
� is smaller than d� by

the corresponding number of unities (the Green function requires counterterms only if d ′
�

is a non-negative integer).
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In the model (2.5), the derivative ∂ at the vertex θ ′(vi∂i)θ can be moved onto the field
θ ′ by virtue of the transversality of the field v. Therefore, in any 1-irreducible diagram it is
always possible to move the derivative onto any of the external tails θ or θ ′, which decreases
the real index of divergence: d ′

� = d� − Nθ − Nθ ′ . The fields θ , θ ′ enter into the counterterms
only in the form of derivatives ∂θ, ∂θ ′.

From the dimensions in table 1, we find d� = d + 2 − Nv + Nθ − (d + 1)Nθ ′ and
d ′

� = (d + 2)(1 − Nθ ′) − Nv. From these expressions, we conclude that for any d superficial
divergences can exist only in the 1-irreducible functions 〈θ ′θ · · · θ〉 with Nθ ′ = 1 and arbitrary
value of Nθ , for which d� = 2, d ′

� = 0. However, all the functions with Nθ > Nθ ′ vanish
(see above) and obviously do not require counterterms. We are left with the only superficially
divergent function 〈θ ′θ〉; the corresponding counterterm must contain two symbols ∂ and is
therefore reduced to θ ′∂2θ . This leads to the renormalized action of the form

SR() = θ ′Dθθ
′/2 + θ ′[−∂tθ − (vi∂i)θ + κZκ∂

2θ ] − vD−1
v v/2 (2.7)

or, equivalently, to the multiplicative renormalization of the parameters κ0 and g0 in the action
functional (2.5) with the only independent renormalization constant Zκ :

κ0 = κZκ, g0 = gµεZg, Zg = Z−1
κ . (2.8)

Here µ is the reference mass in the minimal subtraction scheme (MS), which we always use
in what follows, g and κ are renormalized analogues of the bare parameters g0 and κ0, and
Z = Z(g, ε, d) are the renormalization constants. Their relation in (2.8) results from the
absence of renormalization of the contribution with D0 in (2.5), so that D0 ≡ g0κ0 = gµεκ ,
see (2.4). No renormalization of the fields and the ‘mass’ m is required, i.e., Z = 1 for all 

and m0 = m,Zm = 1.

2.3. RG equations, RG functions and the fixed point

The fields in our model are not renormalized, their renormalized Green functions WR coincide
with the corresponding unrenormalized functions W = 〈 · · · 〉; the only difference is in the
choice of variables and in the form of perturbation theory (in g instead of g0):

WR(g, κ, µ, . . .) = W(g0, κ0, . . .) (2.9)

(the dots stand for other arguments such as coordinates and momenta).
We use D̃µ to denote the differential operator µ∂µ for fixed bare parameters g0, κ0 and

operate on both sides of equation (2.9) with it. This gives the basic differential RG equation

DRGWR(g, κ, µ, . . .) = 0, DRG ≡ Dµ + β(g)∂g − γκ(g)Dκ , (2.10)

where we have written Ds ≡ s∂s for any variable s,DRG is the operation D̃µ expressed in
renormalized variables and the RG functions (the β function and the anomalous dimension γ )
are defined as

γκ(g) ≡ D̃µ ln Zκ, β(g) ≡ D̃µg = g[−ε + γκ ]. (2.11)

The relation between β and γ results from the definitions and the last relation in (2.8). In
general, if some quantity F is renormalized multiplicatively, F = ZF FR , it satisfies the RG
equation of the form

[DRG + γF (g)]FR = 0, γF (g) ≡ Dµ ln ZF (2.12)

with the operator DRG from (2.10).
The constant Zκ is determined from the condition that the exact response function

G ≡ 〈θθ ′〉 be finite at ε = 0 when expressed in renormalized variables. The function G
satisfies the standard Dyson equation

G−1(ω, k) = −iω + κ0k
2 − �θ ′θ (ω, k), (2.13)
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Figure 1. The one-loop approximation to the self-energy operator in model (2.5).

where �θ ′θ the self-energy operator represented by 1-irreducible diagrams. It is shown in
figure 1 in the one-loop approximation. There, the solid line represents the bare propagator
〈θθ ′〉0, slashed ends correspond to the field θ ′, ends without a slash correspond to θ ; the dashed
line represents the correlator (2.3); the points where it is attached to the solid line correspond
to the vertex −θ ′(vi∂i)θ . From the explicit form of the vertex and the bare propagators
(2.3), (2.6), it follows that any multi-loop diagram of the function �θ ′θ contains effectively a
closed circuit of retarded propagators 〈θθ ′〉0 and therefore vanishes; it is crucial here that the
propagator 〈vv〉0 in (2.3) is proportional to the δ function in time. Thus, the function �θ ′θ and
the renormalization constant Zκ in the model (2.5) are given by the one-loop approximation
exactly, i.e., they have no corrections of orders g2, g3 and so on. Explicit calculation gives

Zκ = 1 − g(d − 1)Cd

2dε
, (2.14)

where Cd ≡ Sd/(2π)d and Sd ≡ 2πd/2/�(d/2) is the surface area of the unit sphere in the
d-dimensional space.

From definitions (2.11), using equation (2.14) we find exact expressions for the basic RG
functions:

γκ(g) = g(d − 1)Cd

2d
, β(g) = g

[
−ε +

g(d − 1)Cd

2d

]
. (2.15)

From (2.15), it follows that an IR-attractive fixed point

g∗ = 2dε

Cd(d − 1)
(2.16)

of the RG equations (β(g∗) = 0, β ′(g∗) = ε > 0) exists in the physical region g > 0 for all
0 < ε < 2. The value of γκ(g) at the fixed point is also found exactly:

γ ∗
κ ≡ γκ(g∗) = ε, (2.17)

without corrections of orders ε2, ε3 and so on.
It should be noted that vanishing of the higher order terms in β(g) and g∗ is not crucial

for the applicability of the RG approach: for finite correlation time [51–54] or non-Gaussian
velocity ensemble [51, 55], those quantities are given by infinite series in g and ε, respectively,
but the analogue of equation (2.17) holds as a consequence of the relation between the
renormalization constants in (2.8).

2.4. Solution of the RG equations: invariant variables

Consider the solution of the RG equation on the example of the even different-time structure
functions

S2n(r, τ ) ≡ 〈[θ(t, x) − θ(t ′, x′)]2n〉, r = |x − x′|, τ ≡ t − t ′. (2.18)

It satisfies the RG equation DRGS2n = 0 with the operator DRG from equation (2.10). It should
be noted that the structure functions (2.18) involve composite operators θn, and the above RG
equation does not follow automatically from equation (2.10) for ordinary correlation functions;
it will be justified later in section 2.5.



7834 N V Antonov

In renormalized variables, dimensionality considerations give

S2n(r, τ ) = κ−nr2nR2n(µr, τκ/r2,mr, g), (2.19)

where R2n is a function of completely dimensionless arguments (the dependence on d and ε

is implied). From the RG equation, the identical representation follows,

S2n(r, τ ) = (κ̄)−nr2nR2n(1, τ κ̄/r2,mr, ḡ, ), (2.20)

where the invariant variables ē = ē(µr, e) satisfy the equationDRGē = 0 and the normalization
conditions ē = e at µr = 1 (here e ≡ {κ, g,m} denotes the full set of renormalized
parameters). The identity m̄ ≡ m is a consequence of the absence of Dm in the operator
DRG owing to the fact that m is not renormalized. Equation (2.20) is valid because both sides
of it satisfy the RG equation and coincide for µr = 1 owing to the normalization of the
invariant variables. The relation between the bare and invariant variables has the form

κ0 = κ̄Zκ(ḡ), g0 = ḡr−εZg(ḡ). (2.21)

Equation (2.21) determines implicitly the invariant variables as functions of the bare
parameters; it is valid because both sides of it satisfy the RG equation and because equation
(2.21) at µr = 1 coincides with (2.8) owing to the normalization conditions.

It is well known that for µr → ∞ the invariant coupling constant approaches the
IR-attractive fixed point: ḡ → g∗. Furthermore, the large-µr behaviour of the invariant
diffusivity κ̄ is also found explicitly from equation (2.21) and the last relation in (2.8):
κ̄ = D0r

ε/ḡ → D0r
ε/g∗ (we recall that D0 = g0κ0). Then for µr → ∞ and any fixed mr ,

we obtain

S2n(r, τ ) = (D0/g∗)−nrn(2−ε)ξ2n(τD0r
�t , mr), (2.22)

where

ξ2n(D0τr�t , mr) ≡ R2n(1,D0τr�t , mr, g∗) (2.23)

and �t ≡ −2 + γ ∗
κ = −2 + ε is the critical dimension of time. The dependence of the scaling

function ξ2n on its arguments is not determined by the RG equation (2.10) itself. For the
equal-time structure function (1.1), the first argument of ξ2n in the representation (2.23) is
absent:

S2n(r) = (D0/g∗)−nrn(2−ε)ξ2n(mr), (2.24)

where the definition of ξ2n is obvious from (2.23). It is noteworthy that equations (2.22)–(2.24)
prove the independence of the structure functions in the IR range (large µr and arbitrary mr)
of the diffusivity coefficient or, equivalently, of the UV scale: the parameters g0 and κ0 enter
into equation (2.22) only in the form of the combination D0 = g0κ0. A similar property
was established in [57] for the stirred Navier–Stokes equation and is related to the second
Kolmogorov hypothesis; see also the discussion in [30–32].

Now let us turn to the general case. Let F(r, τ ) be some multiplicatively renormalized
quantity (say, a correlation function involving composite operators), i.e., F = ZF FR with
certain renormalization constant ZF . It satisfies the RG equation of the form [DRG + γF ]FR = 0
with γF from (2.12). Dimensionality considerations give

FR(r, τ ) = κdω
F r−dF RF (µr, τκ/r2,mr, g), (2.25)

where dω
F and dF are the frequency and total canonical dimensions of F (see section 2.2) and

RF is a function of dimensionless arguments. The analogue of equation (2.20) has the form

F(r, τ ) = ZF (g)FR = ZF (ḡ)(κ̄)d
ω
F r−dF RF (1, τ κ̄/r2,mr, ḡ). (2.26)
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In the large-µr limit, one has ZF (ḡ)  const(�r)−γ ∗
F . The UV scale appears in this relation

from equation (2.4). Then in the IR range (�r ∼ µr large, mr arbitrary), equation (2.26)
takes on the form

F(r, τ )  const �−γ ∗
F D

dω
F

0 r−�[F ]ξF (D0τr�t , mr). (2.27)

Here

�[F ] ≡ �F = dk
F − �td

ω
F + γ ∗

F , �t = −2 + ε, (2.28)

is the critical dimension of the function F and the scaling function ξF is related to RF as in
equation (2.22). For nontrivial γ ∗

F , the function F in the IR range retains the dependence on
� = 1/� or, equivalently, on κ0.

Representation (2.24) for any scaling function ξ(u) describes the behaviour of the structure
functions for µr � 1 and any fixed value of u ≡ mr; the inertial range corresponds to the
additional condition u � 1. As already mentioned, the form of the functions ξ(u) is not
determined by the RG equation (2.10). Calculating the function R in (2.23) within the
renormalized perturbation theory, R = ∑∞

n=0 gnRn, substituting g → g∗ and expanding g∗
and Rn in ε, one obtains the ε expansion for the scaling function (it is important here that the
coefficients Rn have no poles in ε):

ξ(u) =
∞∑

k=0

εkξ (k)(u). (2.29)

Although the coefficients ξ (k) can be finite at u = 0, this does not prove the finiteness of
ξ(u) beyond the ε expansion: one can show that for any arbitrarily small value of ε there are
diagrams that diverge at m ∝ u → 0. As a result, the coefficients ξ (k) contain IR singularities of
the form up lnq u, these ‘large IR logarithms’ compensate for the smallness of ε, and the actual
expansion parameter appears to be ε ln u rather than ε itself. Thus, the plain expansion (2.29)
is not suitable for the analysis of the small-u behaviour of ξ(u).

The formal statement of the problem is to sum up the expansion (2.29) assuming that ε

is small with the additional condition that ε ln u ∼ 1. By analogy with the theory of critical
behaviour [7, 8], this problem can be attacked with the aid of the operator product expansion;
see [30–32]. It will be discussed in section 2.6. The key role will be played by the scaling
dimensions of certain composite fields. The renormalization of those objects is discussed in
the next section.

2.5. Composite fields: renormalization and scaling dimensions

In the following, an important role will be played by the composite fields (composite operators
in quantum-field terminology) built of the field θ(x) and its spatial derivatives. We recall that
the term ‘local composite operator’ refers to any monomial or polynomial built of the fields
 and their derivatives at a single spacetime point x = {t, x}, for example θn(x), θ ′∂2θ(x) or
θ ′(v∂)θ(x).

Coincidence of the field arguments in correlation functions containing an operator F gives
rise to additional UV divergences, removed by a special renormalization procedure. Owing
to the renormalization, the critical dimension �F associated with certain operator F is not in
general equal to the simple sum of critical dimensions of the fields and derivatives entering
into F. As a rule, composite operators ‘mix’ in renormalization, that is, an UV finite
renormalized operator is a linear combination of unrenormalized operators, and vice versa.

In general, counterterms to a given operator F are determined by all possible
1-irreducible Green functions with one operator F and arbitrary number of primary fields,
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� = 〈F(x)(x1) · · · (xn)〉1-ir. The total canonical dimension (formal index of divergence)
for such quantities is given by

d� = dF −
∑


Nd, (2.30)

with the summation over all types of fields entering into the function and the canonical
dimensions from table 1. For superficially divergent diagrams, d� is a non-negative integer.

Consider first operators of the form θn(x) with the canonical dimension dF = −n, entering
the structure functions (1.1). From table 1, we obtain d� = −n + Nθ − Nv − (d + 1)Nθ ′ , and
from the analysis of the diagrams it follows that the total number of the fields θ entering
the function � can never exceed the number of the fields θ in the operator θn itself: Nθ � n.
Therefore, the divergence can only exist in the functions with Nv = Nθ ′ = 0 and arbitrary value
of n = Nθ , for which the formal index vanishes: d� = 0. However, at least one of Nθ external
‘tails’ of the field θ is attached to a vertex θ ′(vi∂i)θ (it is impossible to construct nontrivial
superficially divergent diagram of the desired type with all the external tails attached to the
vertex F), at least one derivative ∂ appears as an extra factor in the diagram and, consequently,
the real index of divergence d ′

� (see section 2.2) is necessarily negative.
This means that the operator θn requires no counterterms at all, i.e., it is in fact UV finite,

θn = Z[θn]R with Z = 1. It then follows that the critical dimension of θn(x) is simply given
by expression (2.28) with no correction from γ ∗

F and is therefore reduced to the sum of the
critical dimensions of the factors:

�[θn] = n�[θ ] = n(−1 + ε/2). (2.31)

This justifies the RG equation in the form (2.10) for the correlation functions involving the
operators θn(x), in particular, the structure functions (1.1).

Let us turn to the operators

Fn ≡ [∂iθ∂iθ ]n (2.32)

with dF = 0, dω
F = −n. They appear on the left-hand side of equation (1.6) and, as we shall

see in section 2.6, it is their critical dimensions that determine the anomalous exponents in
(1.4) and (1.6).

In this case, from table 1 we have d� = Nθ − Nv − (d + 1)Nθ ′ , with the necessary
condition Nθ � 2n, which follows from the structure of the diagrams. It is also obvious from
the analysis of the diagrams that the counterterms to these operators can involve the fields θ ,
θ ′ only in the form of derivatives, ∂θ, ∂θ ′, and so the real index of divergence has the form
d ′

� = d� − Nθ − Nθ ′ = −Nv − (d + 2)Nθ ′ . It then follows that superficial divergences exist
only in the Green functions with Nv = Nθ ′ = 0 and any Nθ � 2n, and the corresponding
operator counterterms are reduced to the form Fk with k � n. Therefore, the operators Fn can
mix only with each other in renormalization, the corresponding infinite renormalization matrix
ZF = {Znk} is in fact triangular, Znk = 0 for k > n, and the critical dimensions associated
with the operators Fn are determined by the diagonal elements Zn ≡ Znn (in contrast with the
case of operators θn, they are not equal to unity here).

The constants Zn are determined by the condition that the 1-irreducible function

�n = 〈
FR

n (x)θ(x1) · · · θ(xn)
〉 = Z−1

n 〈Fn(x)θ(x1) · · · θ(xn)〉 (2.33)

be finite in the renormalized theory. One can write �n = Fn +
∑∞

l=1 �(l), where �(l) is the sum
of the diagrams with l loops with the proper symmetry coefficients. The contributions �(1)

and �(2), needed for the two-loop calculation of the constant Zn, are shown in figures 2(a)
and (b), respectively. The thick dots correspond to the composite operator Fn, the other
diagrammatic elements are the same as in figure 1 (see the text above equation (2.13)). All the
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(a)

(b)

Figure 2. The one-loop (a) and two-loop (b) contributions to the function �n from (2.33).

solid lines correspond to the propagators 〈θθ ′〉0, the slashes are always placed on the lower
ends of the lines, so they are not shown. The nomenclature of the two-loop diagrams is taken
from [35]: in ‘no MN ’, M is the number of the solid ‘rays’ in the diagram and N is the order
number of the diagram with given M.

Thus, for the corresponding scaling dimension �n from equation (2.28) and data from
table 1, one obtains

�n = nε + γ ∗
n , γn = D̃µ ln Zn. (2.34)

In the next section, the dimensions (2.34) will be identified with the anomalous exponents
in (1.4). This allows one to construct a systematic perturbation expansion for the latter as
series in ε:

�n =
∞∑

k=1

�(k)
n εk (2.35)

and to use the well-known diagrammatic techniques for the practical calculation of the
coefficients �(k)

n .
The one-loop calculation gives �(1)

n = −2n(n − 1)/(d + 2) in agreement with the result
(1.5) obtained in [21] within the zero-mode approach. The result �1 = 0 is valid to all orders
in ε, which can be proven using certain Schwinger equation, which has the meaning of the
energy conservation law [23].

The calculation beyond the one-loop order becomes rather cumbersome and labour
consuming and, for Kraichnan’s model, was accomplished only in the second [23] and third
[35, 36] orders of the ε expansion (two-loop and three-loop approximations, respectively). We
refer the interested reader to [36], where the three-loop calculation is presented in detail, and
here we give only the answers. The second-order result has the form

�(2)
n = n(n − 1)

(d − 1)(d + 2)3(d + 4)2
{−4(d + 1)(d + 4)2 + 3(d − 1)(d + 2)

× (d + 4)(d + 2n)h(d) − 4(d + 1)(d + 2)(d + 3n − 2)h(d + 2)}, (2.36)

where h(d) ≡ F(1, 1; d/2 + 2; 1/4) and F(· · ·) is the hypergeometric series. Simpler
expressions are obtained for integer d, in particular, h(2) = 8[1 − 3 ln(4/3)], h(3) =
10(π

√
3 − 16/3), while for the other integer d analogous expressions can be obtained from

the recurrent relation 3h(d) + (d + 2)h(d + 2)/(d + 4) = 4.
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No analytical result for �(3)
n is available as a function of d; it can be calculated numerically

for any given integer d. In particular,

�(3)
n = n(n − 2)(0.087 55n2 + 0.5192n + 0.2588) (2.37)

for d = 2 and

�(3)
n = n(n − 2)(0.0224n2 + 0.1592n + 0.1372) (2.38)

for d = 3. The quantities �(k)
n can also be expanded as series in 1/d; the coefficients of such

an expansion can be found analytically, in principle, to any given order. To the order ε3 with
the accuracy of 1/d2, one has

�n = εn(n − 2){−(1 − 2/d)/2d + 3ε/4d2 + 7ε2/4d2}. (2.39)

Note that expressions (2.36) and (2.39) are in agreement with the O(1/d) result for �n obtained
in [22]; see equation (1.5). The latter shows that the O(1/d) contribution is completely
contained in the O(ε) term, while the higher order terms O(εk) with k � 2 for large d involve
no O(1/d) terms and behave as O(1/d2).

The knowledge of the three terms of the ε expansion in the model (2.1)–(2.3) allows
one to discuss its convergence properties and to obtain improved predictions for finite ε in
reasonable agreement with the existing nonperturbative results: analytical solution of the zero-
mode equations for n = 2 [22], numerical solutions for n = 3 [58] and numerical experiments
for n = 4 [59] and n = 6 [60].

2.6. Operator product expansion and anomalous scaling

As already noted, representations of the types (2.22)–(2.24) and (2.27) for any scaling functions
ξ(mr) describe the behaviour of the correlation functions for µr ∼ �r � 1 and any fixed
value of mr . The inertial range corresponds to the additional condition mr � 1. The form of
the functions ξ(mr) is not determined by the RG equations themselves; they can be calculated
as series in ε, but this is useless for the analysis of their behaviour at mr → 0. By analogy with
the theory of critical phenomena [7, 8], it can be studied using the operator product expansion.
Below we concentrate on the equal-time structure functions (1.1) and (2.24).

According to the OPE, the behaviour of the quantities entering into the right-hand side of
equation (1.1) for r = x − x′ → 0 and fixed x + x′ is given by the infinite sum

[θ(t, x) − θ(t, x′)]n =
∑
F

CF (r)F
(

t,
x + x′

2

)
, (2.40)

where CF are coefficients regular in m2 and F are all possible renormalized local composite
operators allowed by the symmetry. More precisely, the operators entering into the OPE are
those which appear in the naive Taylor expansion and all the operators that admix to them in
renormalization.

In what follows, it is assumed that the expansion is made in irreducible tensors (scalars,
vectors and traceless tensors); the possible tensor indices of the operators F are contracted
with the corresponding indices of the coefficients CF . With no loss of generality, it can also
be assumed that the expansion is made in ‘scaling’ operators, i.e., those having definite critical
dimensions �F (see section 2.5).

The structure functions (1.1) are obtained by averaging equation (2.40) with the weight
expSR with the renormalized action (2.7); the mean values 〈F 〉 appear on the right-hand side.
Their asymptotic behaviour for m → 0 is found from the corresponding RG equations and
has the form 〈F 〉 ∝ m�F .
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From the RG representation (2.24) and the operator product expansion (2.40), we therefore
find the following expression for the structure function in the inertial range (�r � 1,mr � 1):

Sn(r) = D
−n/2
0 rn(1−ε/2)

∑
F

AF (mr)(mr)�F , (2.41)

where the coefficients AF are regular in (mr)2.
Some general remarks are now in order.
Owing to the translational invariance, the operators having the form of total derivatives

give no contribution to equation (2.41): 〈∂F (x)〉 = ∂〈F(x)〉 = ∂ × const = 0.
In the model (2.1)–(2.3), the operators with an odd number of fields θ also have vanishing

mean values; their contributions vanish along with the odd structure functions themselves
(they will be ‘activated’ in the presence of a nonzero mixed correlation function 〈vf 〉; we
shall not discuss this possibility here).

Owing to the isotropy of the model, only contributions of the scalar operators survive
in (2.41). Indeed, in the SO(d)-covariant case, the mean value of a tensor operator depends
only on scalar parameters, its tensor indices can only be those of Kronecker delta symbols.
It is impossible, however, to construct nonzero irreducible (traceless) tensor solely of the
delta symbols. The coefficients AF and therefore the functions S2n depend only on r = |r|.
(In the presence of anisotropy, irreducible tensor operators acquire nonzero mean values and
their contributions appear on the right-hand side of (2.41). Such models will be discussed in
section 3.)

The feature characteristic of the models describing turbulence is the existence of the
so-called ‘dangerous’ composite operators with negative critical dimensions; see [31, 32].
Their contributions into the OPE give rise to singular behaviour of the scaling functions for
mr → 0, that is, the anomalous scaling.

Since �F = dF + O(ε), the operators with minimal �F are those involving maximum
possible number of fields θ and minimum possible number of derivatives (at least for small ε).
Both the problem (2.1)–(2.3) and the quantities (1.1) possess the symmetry θ → θ + const.
It then follows that the expansion (2.40) involves only operators invariant with respect to this
shift and therefore built of the gradients of θ .

As already mentioned, the operators entering into the right-hand side of equation (2.40) are
those which appear in the Taylor expansion and those that admix to them in renormalization.
The leading term of the Taylor expansion for Sn is the 2nth rank operator which can
symbolically be written as (∂θ)n; its decomposition in irreducible tensors gives rise to operators
of lower ranks. These contributions exist in the OPE (before averaging) even if the stirring
force in not included into equation (2.1); in the language of [21, 22], it is then tempting
to identify them with the zero modes. In the presence of the stirring force, operators of
the form (∂θ)k with k < n admix to them in renormalization and appear in the OPE; their
contributions correspond to solutions of the inhomogeneous equations. Owing to the linearity
of problem (2.1), operators with k > n (whose contributions would be more important) do
not admix in renormalization to the terms of the Taylor expansion for Sn and do not appear
in the corresponding OPE. All these operators have minimal possible canonical dimension
dF = 0 (see table 1) and determine the leading terms of the mr → 0 behaviour in the sectors
with j � 2n. Operators involving more derivatives than fields θ (and thus having canonical
dimensions dF = 1, 2 and so on) determine correction terms for mr → 0.

We thus have established the representations (1.4) within the RG and OPE approach and
identified the anomalous exponents �n with the scaling dimensions of the composite fields
Fn ≡ [∂iθ∂iθ ]n.
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Representations analogous to (1.4) can be written for other quantities. In particular, for
the equal-time pair correlation functions of the operators En(x) = κn

0 Fn(x) with Fn from
(2.32), powers of the dissipation rate of scalar fluctuations, one obtains

〈En(x)Ep(x ′)〉 = (�r)−�n−�pfn,p(mr),

fn,p(mr) = const(mr)�n+p
(2.42)

with the same dimensions �n as in (1.4). The first expression follows from the corresponding
RG equation and holds for (�r) � 1 and arbitrary fixed (mr); the second follows from
the corresponding OPE with the leading term determined by the operator Fn+p and holds for
(mr) � 1. More examples, e.g. those with tensor composite operators, can be found in
[22, 23]. Note that for n = p = 1 the correlation function (2.42) is independent of the UV
scale �, which can be viewed as the analogue of the second Kolmogorov hypothesis. It is also
worth noting that the family of operators En ∝ Fn is ‘closed with respect to the fusion’ in the
sense that the leading term in the OPE for the pair correlator (2.42) is given by the operator
Fn+m from the same family with the summed index n + m. This fact along with the inequality
�n +�m > �n+m, which is obvious from the explicit expressions for �n, can be interpreted as
the statement that the correlations of the local dissipation rate in the model (2.1)–(2.3) exhibit
multifractal behaviour, see [25, 26]. It remains to note that the same inequality ensures the
fulfilment of the Hölder inequality for the structure functions (1.4).

2.7. Comparison with numerical experiments

The knowledge of the three terms of the ε expansion for the anomalous exponents �n in
the model (2.1)–(2.3) allows one to discuss the nature and convergence properties of such
expansions in dynamical models in general, to try to construct improved expansions and to
obtain reasonable predictions for finite ε ∼ 1. An important advantage of the Kraichnan model
is the existence of exact analytical results and very accurate numerical simulations: analytical
solution of the zero-mode equations for n = 2 [22], numerical solutions for n = 3 [58] and
numerical experiments for n = 4 [59] and n = 6 [60]. This gives a unique opportunity to
compare those nonperturbative data with the perturbative results of the ε expansion. In some
respects, such a comparison is more interesting than that with actual experiments, because all
the results pertain to the same exactly defined model, while in experiments any deviations from
theoretical predictions can be attributed to the effect of impurities, unaccounted interactions
and so on1. These issues are discussed in [35, 36].

Due to the time decorrelation of the velocity field, in the rapid-change model the Eulerian
and Lagrangian statistics of the velocity field are identical. This allows one to perform very
accurate numerical simulations in the Lagrangian frame, because it is sufficient to generate
the velocity field only along the particles’ trajectories. In practice, the functions S4 [59] and
S6 [60] were determined for various values of the parameter ε.

As far as the ε dependence is concerned, the simulations [59, 60] show that �n decreases
with ε, achieves a minimum at some point inside the interval 0 < ε < 2 and then increases
to zero at ε = 2; the depth of the minimum grows and its position moves to the origin as n
grows from 4 to 6 or d decreases from 3 to 2. It turns out that even the naive sum of the first
three terms of the ε expansion reproduce these, rather subtle, features of the nonperturbative
results. This behaviour is illustrated by figures 3(a) (n = 6) and (b) (n = 4), where the results
of the improved ε expansion (see below) are also shown.

1 It is worth noting that, for d = 3 and the most realistic (Kolmogorov) value ε = 4/3, the results of [59, 60] are in a
surprisingly good agreement with known experimental estimates for the anomalous exponents (e.g. [12, 13]), which
supports the relevance of the Kraichnan model for description of the real turbulent transfer.
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Figure 3. Dimensions �n for d = 3: n = 6 (a) and n = 4 (b). Dots connected by dashed lines:
numerical simulations by [60] (n = 6) and [59] (n = 4). Solid lines: the O(ε) slope, third-order
approximation of the improved ε expansion and third-order approximation of the plain ε expansion
(from above to below).

For small ε, the agreement between the ε expansion and nonperturbative results improves
when the higher order terms are taken into account, but the deviation becomes remarkable for
ε ∼ 1 and decreasing d. Furthermore, the convergence of the ε series appears more irregular
for d = 2, while the forms of the nonperturbative results are not much affected by the choice
of d. Such behaviour can be naturally explained by exact analytical results for the exponents
describing anisotropic contributions to S2 (they are nontrivial in the presence of the large-scale
anisotropy; see section 3.2). They suggest that in the rapid-change model the series in ε have
finite radii of convergence εc, depending on the exponent in question and ranging from 0 to
∞ when d varies from 1 to ∞. Hence, the direct summation of the ε expansion for �n works
only in the interval ε < εc, which decreases almost linearly with (d − 1).

The difference with the models of critical phenomena, where ε series are always
asymptotical, can be traced back to the fact that in the rapid-change models there is no
factorial growth of the number of diagrams in higher orders of the perturbation theory: too
many diagrams vanish due to the presence of the closed circuits of retarded propagators (see
item (2) in section 2.2). The divergence of εc for d → 1 can be related to the fact that the
transverse vector field ceases to exist in one dimension. Therefore, in order to improve the
convergence and to obtain reasonable predictions for finite ε, one should augment plain ε

expansions by the information about the character of the singularities and their location in the
complex ε plane, which can be extracted from the asymptotical behaviour of the coefficients
�(k)

n in equation (2.35) at large k.
In field-theoretic models, such behaviour is studied with the aid of instanton analysis

(steepest descent calculation of the relevant functional integrals); see e.g. [7]. No such
information, however, is available yet for the exponents �n in the model (2.1)–(2.3). The
instanton analysis of [61] did not touch upon the problem of the large-order coefficients of
perturbative series. It has mostly been concentrated on the behaviour of the exponents at large
n and predicts saturation (that is, existence of finite limit) of the total exponent n(2 − ε) + �n
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in (1.4) for n → ∞. In [62], the instanton method was applied to the scaling dimensions
of composite operators θn. In contrast to the case (2.3), where they are given exactly by
simple relations (2.31), they become infinite series in ε if the advecting velocity field is
not transverse (see section 3.1). The analysis of [62] indeed demonstrates the absence of
factorial growth in the large-k behaviour. Unfortunately, no generalization to operators built
of derivatives, and hence to the dimensions �n which we are interested in here, has been
obtained yet.

It turns out, however, that certain elementary considerations allow one to improve the
ε expansions without the information about their higher order behaviour [36]. Assume that
the ε series for γ ∗

n has a finite radius of convergence, and that the singularity that determines
it (closest to the origin) is algebraic. Then this singularity will disappear for the ‘inverse ε

expansion’—ε as a series in γ ∗
n —and the convergence of the latter improves in comparison

to the direct one. Practical implementation of this idea leads to an apparent improvement
of the convergence of the ε series and, at the same time, to a better agreement with the
nonperturbative results. Further improvement can be achieved using an interpolation formula
which combines the first terms of the ε expansion with the asymptotic form of the dimensions
�n in the opposite limit ε → 2, proposed (for n = 4) in [59] on the basis of their numerical
simulation.

The conclusion is optimistic: the first few terms of the ε expansion, augmented by simple
additional considerations, provide an adequate description of the anomalous behaviour also
for finite values of ε.

3. Aspects of universality: effects of compressibility, anisotropy and memory

In the original Kraichnan model (2.1)–(2.3), the velocity field is taken to be Gaussian, isotropic,
incompressible and decorrelated in time. Of course, such assumptions are strong departures
from the statistical properties of genuine turbulence. More realistic models should involve
anisotropy, compressibility, finite correlation time and so on. Recent studies have pointed up
some significant differences between the zero and finite correlation-time problems [63, 64]
and between the compressible and incompressible cases [65–70].

In [71], a generalized phenomenological model was considered in which the temporal
correlation of the advecting field was set by eddy turnover. It was argued that the anomalous
exponents may depend on more details of the velocity statistics, than just the exponents.
This idea has received further analytical support in [63, 72], where the case of short but
finite correlation time was considered for the special case of a local turnover exponent. The
anomalous exponents were derived to first order in small correlation time, with Kraichnan’s
rapid-change model [63] or analogous shell model for a scalar field [72] taken as zeroth-order
approximations. The exponents obtained appear nonuniversal through the dependence on
the correlation time. Various aspects of the transport and dispersion of particles in random
Gaussian self-similar velocity fields with finite correlation time were also studied in [73–76].

Another important question recently addressed is the effects of large-scale anisotropy on
inertial-range statistics of passively advected fields [14–16, 41, 48, 49, 51, 58, 69] and the
velocity itself [77]. These studies have shown that the anisotropy present at large scales has
a strong influence on the small-scale statistical properties of the scalar, in disagreement with
what was expected on the basis of the cascade ideas [14–16, 58, 69]. On the other hand, the
exponents describing the inertial-range scaling exhibit universality and hierarchy related to
the degree of anisotropy, which gives some quantitative support to Kolmogorov’s hypothesis
on the restored local isotropy of the inertial-range turbulence [48, 49, 51, 77].
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In a wider context, the Kraichnan model and its descendants can be interesting as
model systems for studying generic nonequilibrium dynamical features. Recently, significant
progress has been achieved in classifying large-scale, long-distance scaling behaviour of such
systems, including driven diffusive systems [78], diffusion-limited reactions [79], ageing,
growth and percolation processes [80], and so on. Being analytically tractable, Kraichnan-
type models can serve as a unique testing ground in studying such scaling regimes and their
universality in general.

3.1. Effects of compressibility

There are two types of diffusion–advection problems for the compressible velocity field.
Passive advection of a density field (say, the density of an impurity) is described by the
equation

∂tθ + ∂i(viθ) = κ0∂
2θ + f, (3.1)

while the advection of a ‘tracer’ (say, temperature, specific entropy or concentration of the
impurity particles) is described by

∂tθ + (vi∂i)θ = κ0∂
2θ + f. (3.2)

In the rapid-change model, f is a Gaussian noise with correlator (2.2), while the correlator of
the Gaussian velocity field is given by expression (2.3) with the replacement

D0Pij (k) → D0Pij (k) + D′
0Qij (k) = D0(Pij (k) + αQij (k)), (3.3)

where Qij (k) = kikj /k2 is the longitudinal projector and D′
0 > 0 is an additional amplitude

factor. The case α = 0 corresponds to the purely transverse velocity field, when ∂ivi = 0
and the models (3.1) and (3.2) coincide. The opposite limit α → ∞ at fixed D′

0 = D0α

corresponds to a purely potential velocity. As a measure of the degree of compressibility, one
often uses the parameter ℘ = α/(d − 1 + α) which satisfies the inequalities 0 � ℘ � 1.

It was shown in [68–70] that the anomalous scaling regime in the compressible models
breaks down if both ε and α are large enough (namely, for ℘ ≡ α/(d −1 +α) > d/ε2) and the
inverse energy cascade with no anomalous scaling takes place. However, in the perturbative
regions (small ε or 1/d) this effect does not take place, and the anomalous scaling can be
studied using the ε expansion.

The RG analysis of sections 2.2 and 2.3 is directly extended to the case α �= 0. The field-
theoretic analogues of the stochastic models (3.1) and (3.2) are multiplicatively renormalizable
with the only independent renormalization constant Zκ , and the corresponding RG equations
possess an IR-stable fixed point. Its coordinate is the same for both the models and has the
form

g∗ = 2dε

Cd(d − 1 + α)
(3.4)

with Cd from (2.14). The fixed point is degenerate in the sense that g∗ depends on the
parameter α. From the RG viewpoints, α can be treated as the second coupling constant.
The corresponding β function βα ≡ D̃µα vanishes identically owing to the fact that α is not
renormalized. Therefore, the equation βα = 0 gives no additional constraint on the values of
the parameters g, α at the fixed point. The value of γν(g) at the fixed point is independent of
α and is exactly given by the same expression (2.17).

The tracer field enters equation (3.2) only in the form of a derivative, so that the invariance
with respect to the shift θ → θ + const holds in this model for all α. Therefore, the analysis
of the composite operators and operator product expansions, performed in sections 2.5 and
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2.6 for the case α = 0, applies to the tracer model for general α. The operators θn are not
renormalized, their dimensions are independent of α and coincide with equation (2.31), the
structure functions satisfy the ordinary RG equations (2.10) and their inertial-range behaviour
is given by expressions (1.4) with the anomalous exponents �n determined by the scaling
dimensions of the operators (2.32). The only difference is that in the present model these
dimensions depend on α. In the first order in ε, one has

�n = −2n(n − 1)ε(1 + 2℘)/(d + 2) + O(ε2) (3.5)

with ℘ = α/(d − 1 + α), that is, the dimension �n for α = ℘ = 0 is multiplied by the
factor (1 + 2℘) � 1. This result was obtained using the zero-mode technique in [68, 69],
where the qualitative observation was made that the intermittency increases with the degree of
compressibility. The O(ε2) correction (with more cumbersome dependence on α) was derived
later in [38] using the RG and OPE approach.

The case of the density field appears rather different [37]. Obviously, the field θ enters
equation (3.1) not only in the form of a derivative, but also without it. As a result, the invariance
with respect to the shift θ → θ + const does not hold for any α �= 0. Although the composite
operators θn remain multiplicatively renormalizable (see the discussion in section 2.5), they
require nontrivial renormalization, θn = Z̄n[θn]R with Z̄n �= 1, and, therefore, they acquire
nontrivial scaling dimensions �̄n different from the simple multiplies of �θ in (2.31). To the
second order, one obtains [37]

�̄n = n(−1 + ε/2) − αn(n − 1)dε

2(d − 1 + α)
+

α(α − 1)n(n − 1)(d − 1)ε2

2(d − 1 + α)2

+
α2n(n − 1)(n − 2)dh(d)ε2

4(d − 1 + α)2
+ O(ε3), (3.6)

with h(d) ≡ F(1, 1; d/2 + 1; 1/4).
As a consequence, different terms in the decomposition

Sn =
∑

k+p=n

Ckp
n 〈θk(x)θp(x ′)〉

acquire different scaling behaviours, with the leading contribution being given by the constant
〈θn〉. Thus, the anomalous scaling now reveals itself not in the structure functions, but in the
pair correlation functions of the composite fields θn:

〈θn(x)θp(x ′)〉 = (κ0�
2)−(n+p)/2(�r)−�̄n−�̄pfn,p(mr),

fn,p(mr) = const(mr)�̄n+p ,
(3.7)

with the dimensions �̄n from (3.6). As usual, the first expression follows from the
corresponding RG equation and holds for (�r) � 1 and arbitrary fixed (mr); the second
follows from the OPE with the leading term determined by the operator θ(n+p) (without
derivatives) and holds for (mr) � 1. For d = 1, expression (3.7) agrees with the result
derived earlier in [67] within the zero-mode approach. Generalization to the cases of finite
correlation time and presence of large-scale anisotropy were studied in [38, 53].

3.2. Large-scale anisotropy

In real experiments or numerical simulations, anisotropy emerges in the system due to
nontrivial geometry of the boundaries, obstacles or stirring devices, and is therefore introduced
at large scales of order L. In the works on the Kraichnan model, it is usually modelled by
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assigning anisotropic properties to the correlation function of the random noise. In general,
instead of (2.2) it is taken in the form

〈f (x)f (x ′)〉 = δ(t − t ′)C(r/L), C(r/L) =
∑
lm

Clm(r/L)Ylm(n), (3.8)

where Clm(r/L) are coefficient functions finite at r = 0 and rapidly decaying for (r/L) → ∞
and Ylm(n) are the spherical harmonics carrying the angular dependence. In the special case of
uniaxial anisotropy (which is often sufficient to reveal all the new anomalous exponents), only
terms with m = 0 (Legendre polynomials for d = 3 or Gegenbauer polynomials for general d)
enter the right-hand side of (3.8). The anisotropy makes it possible to also introduce a mixed
correlator 〈vf 〉, which gives rise to nonvanishing odd correlation functions of θ but leads to no
serious alterations in the analysis. Another possibility is to substitute θ(x) → (hx)+θ(x) with
a constant vector h, which produces in equation (2.1) the term hv which replaces the artificial
random noise, maintains the steady state and also gives rise to nonvanishing even and odd
correlation functions of θ . This imposed constant gradient mimics, e.g., a constant temperature
difference between the distant walls [15, 16]. The representation analogous to (3.8) can be
written for the relevant correlation functions. In the following, we restrict ourselves with the
special case of uniaxial anisotropy, then the structure functions (1.1) are written in the form

Sn(r) =
∑

l

Snl(r)Pl(n), (3.9)

where Pl are the Gegenbauer (Legendre for d = 3) polynomials, Snl are scalar coefficient
functions dependent only on r = |r| and the functions Sn, in general, do not vanish for odd n.

According to the classical hypothesis on the local isotropy restoration [2], the anisotropy
introduced at large scales dies out when the energy is transferred down to smaller scales
(inertial-range) owing to the cascade mechanism. In most works on Kraichnan’s model,
this hypothesis is tacitly accepted for the statistics of the velocity field, and the latter is still
described by the isotropic ensemble (2.3). Then, for even structure functions, both the zero-
mode and the RG approach give the following hierarchical picture of the isotropy restoration:
in the inertial range, the coefficient functions Snl reveal a power-law behaviour,

Snl(r)  snl(r/L)ζnl , (3.10)

with nonuniversal (e.g. dependent on the coefficients in the decomposition (3.8), the form of
the IR cut-off in (2.3), etc) and universal exponents ζnl dependent only on ε and d, but not
on the way the anisotropy was introduced. The exponents exhibit a kind of hierarchy related
to the degree of anisotropy: for a given n, the higher is the order l of the ‘anisotropic shell’, the
larger is the exponent ζnl and, therefore, the less important is its contribution for (r/L) � 1:

ζnl > ζnl′ for l > l′. (3.11)

Thus, the leading contribution in the inertial-range behaviour is given by the isotropic shell
(l = 0), the corresponding exponent is the same as for the purely isotropic model (2.2), while
the anisotropic contributions give only corrections which vanish for (r/L) → 0, the decay
becomes faster when the order l � 1 increases.

For the passive scalar field and incompressible velocity ensemble (model (2.1), (2.3)), the
exponents ζ2l for the second-order function S2 were derived exactly (that is, without expansion
in ε and for general d) in [22] within the zero-mode approach (see also [81] for d = 2 and
3). For general n, the exponents ζnl were derived, using the RG and OPE approach and in
the one-loop approximation, in [51] for the velocity ensemble with finite correlation time; the
two-loop result was derived in [52]. For the special case of the Kraichnan model (2.3), the
one-loop result was reproduced later in [46, 82]. For the passive vector (magnetic) field, exact
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answers for n = 2 and general l were derived in [48], and the O(ε) result for general n, l can
be found in [41].

Let us briefly outline the RG derivation [51] of the exponents (3.11) for the simplest
case of a scalar field and vanishing correlation time (2.1), (2.3), (3.8). The RG analysis of
section 2 remains essentially the same. In particular, the renormalization constants (2.8),
the coordinate of the fixed point (2.16) and the basic critical dimensions in (2.23) and
(2.31) remain the same, because the diagrams needed for their calculation do not involve
the correlation function of the noise. The main difference is that for isotropic case, only scalar
operators contribute to the representations like (2.41), while in the presence of anisotropy the
irreducible tensor operators acquire nonzero mean values and also contribute to equation (2.41).
For example, the mean value of the operator ∂iθ∂j θ − δij ∂kθ∂kθ/d in the case of uniaxial
anisotropy is proportional to the irreducible tensor ninj − δij /d built of the vector n that
specifies the preferred direction. Contraction of such tensors with the Wilson coefficients
CF (r) in (2.40) gives rise to contributions proportional to Pl(n) in representation (2.41), with
the order l equal to the rank of the operator. Thus, the exponents ζnl in (3.10) are identified
as ζnl = n(1 − ε/2) + �nl , where the first term comes from the RG representation (2.22)
and �nl is the minimal dimension (2.28) of a lth rank tensor composite operator that can give
contribution to the OPE in question. From the analysis of the dimensions, it easily follows
that such an operator should involve minimal possible number of derivatives ∂ and maximal
possible number of fields θ . Thus, for general n and l � n, the set dimensions �nl are
determined by the family of operators

Fn,l ≡ ∂i1θ · · · ∂il θ(∂iθ∂iθ)p + · · · , (3.12)

where l is the number of the free vector indices and n = l + 2p is the total number of the fields
θ entering into the operator. The vector indices of the symbol Fn,l are omitted; the dots stand
for subtracted terms with Kronecker delta symbols which make the tensor (3.12) irreducible.

Note that Fn,0 = Fn from (2.32). Although the operators (3.12) mix in renormalization,
the corresponding matrix Z appears triangular, the dimensions �n,l are determined by its
diagonal elements and thus can be identified as dimensions of individual monomials Fn,l .
Furthermore, they are determined by the 1-irreducible functions 〈Fn,l(x)θ(x1) · · · θ(xn)〉1-ir
(see section 2.5), which do not involve the correlator (3.8); hence the independence on the
noise and the coincidence of the dimension �n,0 with �n from (2.34). More detailed discussion
of these issues can be found e.g. in [51, 53]. In the one-loop approximation, one obtains [51]

ζn,l = n +
2n(n − 1) − (d + 1)(n − l)(d + n + l − 2)

2(d − 1)(d + 2)
ε, (3.13)

which for l = 0 agrees with (1.5); the O(ε2) term was derived in [52]. The inequalities (3.11)
simply follow from the explicit expression (3.13).

The generalization of the result (3.13) to the case of compressible velocity ensemble (with
vanishing and finite correlation time) was presented in [51]:

ζn,l = n +
2n(n − 1)(1 − α) − (d + 1 + α)(n − l)(n + l + d − 2)

2(d + 2)(d − 1 + α)
ε. (3.14)

Detailed derivation was given in [53]; the O(ε2) contribution and exact results for n = 2 (for
Kraichnan’s case) can be found in [52]. Passive magnetic fields were studied in [42]. The main
qualitative conclusion which can be drawn from the explicit expression (3.14), its analogue
for magnetic fields and exact results for n = 2 is that, although the hierarchy relations (3.11)
remain valid for all values of α > 0, the corrections become closer to leading terms as α

increases. This statement can be expressed in the inequalities

∂�n,l/∂l > 0, ∂2�n,l/∂l∂α < 0. (3.15)
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The hierarchical inequalities and analytical results discussed above support and refine
the classical phenomenological hypothesis on the local isotropy restoration for passively
advected scalar and vector fields. However, the general hierarchical picture (superpositions of
power laws with universal exponents and nonuniversal amplitudes) seems much more general,
being compatible with that established recently in the field of NS turbulence, on the basis of
numerical simulations of channel flows and experiments in the atmospheric surface layer, see
[77] and references therein. In those papers, the velocity structure functions were decomposed
into the irreducible representations of the rotation group. It was shown that in each sector
of the decomposition, scaling behaviour can be found with apparently universal exponents.
The amplitudes of the various contributions are nonuniversal, through the dependence on the
position in the flow, the local degree of anisotropy and inhomogeneity, and so on [77].

Nevertheless, the anisotropy survives in the inertial range and reveals itself in odd
correlation functions [15, 16, 58, 53]. Consider the odd-order dimensionless ratios

R2n+1 ≡ S2n+1
/
S

n+1/2
2 ∝ (mr)�2n+1,1−(n+1/2)�2,0 , (3.16)

where R3 is the skewness factor. The last relation, valid in the inertial range of scales,
follows from the RG and OPE representations (section 2) and the observation that the leading
contribution to the OPE of an odd structure function S2n+1 is given by the vector operator
F2n+1,1 from (3.12). Substituting explicit one-loop expressions for the dimensions gives (see
e.g. [53])

R2n+1 ∝ (mr)ε[(d−1+α)(d+2−4n2)−8αn2]/2(d+2)(d−1+α). (3.17)

According to the naive cascade ideas, the quantities (3.16) were expected to decrease for
mr → 0. From (3.17) it follows that, for α = 0,R3 decreases but slower than expected on the
basis of the cascade picture (the result obtained within the zero-mode approach in [58]), while
the higher order ratios diverge as mr → 0. The latter fact agrees with the findings of [83],
where the passive advection by the two-dimensional Navier–Stokes velocity field was studied
in a numerical experiment. For general α, already R3 becomes divergent for mr → 0 provided
the compressibility is strong enough (namely, if α > (d − 1)(d − 2)/(10 − d) + O(ε)), while
the divergence of the higher order ratios becomes even faster as α increases.

This means that compressibility enhances the penetration of the large-scale anisotropy
towards the depth of the inertial range. This fact also seems universal, being observed in the
model of the passively advected magnetic field [42].

The case of anisotropic velocity ensemble, where the strong anisotropy persists to all
scales, was also studied for the passive scalar [39] and vector magnetic [40] fields. In these
studies, the ordinary transverse projector Pij (k) in equation (2.3) was replaced with the general
transverse structure that possesses the uniaxial anisotropy:

Tij (k) = a(ψ)Pij (k) + b(ψ)ñi(k)ñj (k). (3.18)

Here the unit vector n determines the distinguished direction (n2 = 1), ñi(k) ≡ Pij (k)nj and
ψ is the angle between the vectors k and n, so that (nk) = k cos ψ (note that (ñk) = 0).
The scalar functions can be decomposed in the Gegenbauer polynomials (the d-dimensional
generalization of the Legendre polynomials):

a(ψ) =
∞∑
l=0

alP2l (cos ψ), b(ψ) =
∞∑
l=0

blP2l (cos ψ). (3.19)

The positivity of the correlator (2.3) leads to the conditions

a(ψ) > 0, a(ψ) + b(ψ) sin2 ψ > 0. (3.20)
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In practical calculations, the authors of [39, 40] mostly confined themselves with the special
case

Tij (k) = (1 + ρ1 cos2 ψ)Pij (k) + ρ2ñi(k)ñj (k), (3.21)

when the inequalities (3.20) reduce to ρ1,2 > −1. This case represents nicely the typical
features of the general model (3.18).

The RG and OPE approach is applicable to this model; the RG equations possess an IR-
stable fixed point whose coordinate depends on the anisotropy parameters ρ1,2 (like it depends
on α for the compressible case; see section 3.1). As a result, the anomalous exponents,
which are still determined by the scaling dimensions related to the family (3.12), become
nonuniversal through the dependence on ρ1,2. The key difference with the case of large-scale
anisotropy is that for the model (3.18), the operators (3.12) with equal n and different l mix
heavily in renormalization: the matrix Zl,l′ in the renormalization relation Fn,l = Zl,l′F

R
n,l′ is

neither diagonal nor triangular, and it cannot be made triangular by changing to irreducible
tensor operators. Now the small-(mr) behaviour of the scaling functions ξ(mr) in (2.24) is
determined by the eigenvalues of the matrix �F from (2.28); the minimal eigenvalue (which is
no longer identified with the scaling dimension of an individual, e.g. scalar, composite operator
Fnl) determines the leading term in the representation (2.41), while the other determines the
corrections. No explicit analytical expression for general n and l, analogous to (3.13), is
available for finite ρ1,2: although the matrices �F were calculated analytically as a function
of ρ1,2 and d, the diagonalization can only be performed numerically, separately for different
families with given n, and the results can be represented graphically as functions of ρ1,2 and
fixed d. Analytical results can be derived only within the expansion in ρ1,2.

In principle, the nontrivial structure of the matrices Zl,l′ can produce new interesting types
of the small-(mr) behaviour, rather than simple power-like one. It is not impossible that the
matrix (2.28) for some ρ1,2 had a pair of complex conjugate eigenvalues, � and �∗. Then the
scaling function ξ(mr) entering into (2.24) would involve oscillating terms of the form

(mr)Re�{C1 cos[Im�(mr)] + C2 sin[Im�(mr)]}, (3.22)

with some constants Ci .
Another exotic situation emerges if the matrix Zl,l′ cannot be diagonalized and is only

reduced to the Jordan form. In this case, the corresponding contribution to the scaling function
would involve a logarithmic correction to the power-like behaviour, (mr)�[C1 ln(mr) + C2],
where � is the eigenvalue related to the Jordan cell. However, these interesting hypothetical
possibilities are not actually realized for the special cases studied in [39, 40], in spite of the
fact that the structure functions of rather high orders were studied (up to 52 in [40]).

For a given n, the set of eigenvalues of the matrix �F changes continuously with ρ1,2 and
coincides with the set �n,l from (3.13) at ρ1,2 = 0. This allows one to label the eigenvalues by
the pair of numbers n, l, although for finite ρ1,2 they are not determined by the single operator
Fn,l from (3.12). With these reservations, the analysis of [39, 40] shows that the hierarchy
(3.11), obeyed by the dimensions (3.13) at ρ1,2 = 0, survives for all finite (and not small)
values of the anisotropy parameters ρ1,2: the leading term for any given n is always determined
by the eigenvalue labelled by l = 0, the leading correction exponent is labelled by l = 2
and so on. What is more, the leading terms appear less sensitive to the anisotropy than the
correction ones: for small ρ1,2, the correction to the dimension �n,0 from (3.13) has the order
of O(ρ2) and not O(ρ) as could be expected. These properties also remain valid for various
models (3.18) different from the two-parameter case (3.21).

As a rule, Kraichnan’s model is discussed because of the insight it offers into the inertial-
range behaviour of the real turbulence. On the other hand, it can be viewed as an interesting
example of a nontrivial field-theoretic model, in which some quantities can be calculated
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nonperturbatively, without the expansion in ε or in the coupling constant. As already
mentioned above, the exponents ζ2l from (3.8) for the second-order structure function S2

were derived exactly within the zero-mode approach for the scalar Kraichnan model [22, 81]
and its generalizations to the compressible [38] and vector [42, 48, 49] cases. In the RG and
OPE approach, the exponent ζ2l is determined by the scaling dimension of the lth rank tensor
operator built of two fields θ and l derivatives, which is unique (up to irrelevant contributions
having the form of total derivatives):

θ(x)∂i1 · · · ∂il θ(x) + · · · , (3.23)

where the dots stand for subtracted terms with Kronecker delta symbols which make the
tensor (3.23) irreducible [84]. Namely, ζ2l = l + γ ∗

l , where the last term is the anomalous
dimension (2.12) of the operator (3.23). The identification was confirmed by the direct
one-loop calculation of γ ∗

l for the two compressible models (3.1) and (3.2). Therefore,
the exact result for ζ2l derived within the zero-mode approach provides a nonperturbative
expression (as a function of ε, d and α) for the dimension γ ∗

l . This also allows one to
derive exact analytic expressions for the dimension γl(g) away from the fixed point and for
the renormalization constant Zl(g) [84]. Such explicit nonperturbative expressions can be
interesting from methodological point of view to discuss validity of perturbation theory, its
convergence properties, improved perturbation schemes (e.g. instanton methods [62]) and
so on.

4. Velocity ensembles with finite correlation time

Vanishing of the correlation time of the velocity field in Kraichnan’s ensemble is crucial for
the existence of closed differential equations for the equal-time correlation functions, and
hence for the practical applicability of the zero-mode approach. As already mentioned, that
approach can be interpreted as an implementation of the famous field-theoretic idea of self-
consistent (bootstrap) equations, which involve skeleton diagrams with dressed lines (and
probably vertices) and dropped bare terms. Owing to special features of Kraichnan’s model
(linearity in θ , Gaussianity and time decorrelation of the velocity) such equations can be written
explicitly, and they have the forms of differential equations with known coefficient functions
written in a closed form. For finite correlation time, their analogues would involve infinite
diagrammatic series, so that the corresponding anomalous exponents, to our knowledge, have
never been extracted from such equations. A very serious difficulty is that for finite correlation
time, such equations necessarily involve different-time correlation functions, which are not
Galilean invariant and, therefore, are affected by the infamous ‘sweeping effects’ that obscure
the relevant physical interactions. Systematic elimination of the sweeping effects has always
been a notorious problem in the bootstrap approach to the NS turbulence; see e.g. [85]. The
first-order corrections in small correlation time to the anomalous exponents were derived
for Kraichnan’s rapid-change model [63] and analogous shell model [72], but no systematic
expansion has been obtained. The transport and dispersion of particles in random Gaussian
self-similar velocity fields with finite correlation time were also studied by various analytical
or numerical methods in [12–19] and [63–76]; see also the references therein.

Below we confine ourselves with the discussion of the RG and OPE approach to the
passive scalar [51–54] and vector [55] advection for a finite-correlated velocity, governed by
a synthetic Gaussian velocity ensemble [51–54] and a non-Gaussian velocity described by the
stirred NS equation [51, 55].
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4.1. Gaussian synthetic velocity ensembles

The most natural generalization of the rapid-change model is the linear stochastic equation for
the velocity with given effective k-dependent viscosity coefficient and the time-decorrelated
random force with given correlator, the model proposed and studied e.g. in [15]. The RG and
OPE approach (with no serious alterations in comparison to the vanishing correlation time) is
also applicable to such a model [51]. Up to the notation, the energy spectrum of the velocity in
the inertial range was taken in the form E(k) ∝ k1−2ε̃, while the correlation time at the wave
number k scaled as t (k) ∼ k−2+η. Then ε̃ and η play the role of two expansion parameters
(analogous to the single parameter ε in Kraichnan’s case). It was shown that, depending on
the values of the exponents ε̃ and η, the model reveals various types of inertial-range scaling
regimes with nontrivial anomalous exponents. For η > ε̃, they coincide with the exponents of
the rapid-change model and depend on the only parameter ε = 2ε̃ − η, while for ε̃ > η they
coincide with the exponents of the opposite (‘quenched’ or ‘frozen’) case and depend only
on ε̃.

The most interesting case is η = ε̃, when the exponents can be nonuniversal through the
dependence on the correlation time (more precisely, on the ratio u of the velocity correlation
time and the eddy turnover time of the passive scalar). This is in a qualitative agreement
with the results of [63, 72] where such nonuniversality was also established. However, due
to accidental cancellations, the actual nonuniversality is absent in the one-loop order (studied
in [51]) and reveals itself only in the order O(ε2), calculated in [54] (including anisotropic
sectors).

The main conclusions of [54] can be formulated as follows: the qualitative effect of
the finite correlation time on the anomalous scaling depends essentially on the correlation
function considered, the value of u and the space dimensionality d. For the low-order structure
functions and in low dimensions (d = 2 or 3), the inclusion of finite correlation time enhances
the intermittency in comparison with both the limits: the time-decorrelated (u = ∞) and
time-independent (u = 0) ones. Although the anomalous exponents have a well-defined limit
for u → 0, they show interesting irregularities in the vicinity of the quenched limit: a rapid
fall-off when u = 0 increases from zero, with infinite slope for d = 2, with a pronounced
minimum for u ∼ 1. In contrast, the behaviour in the region of large u is smooth, like for the
shell model studied in [72]. For higher order structure functions and large d, the anomalous
scaling is always weaker in comparison with the rapid-change limit and the corresponding
(positive) correction is maximal for u = 0 and monotonically decreases to zero as u tends to
infinity.

As was pointed out in [15], the Gaussian model with finite correlation time suffers from
the lack of Galilean invariance and therefore misrepresents the self-advection of turbulent
eddies. It is well known that the different-time correlations of the Eulerian velocity field are
not self-similar, as a result of these ‘sweeping effects’, and depend substantially on the integral
scale. It would be much more appropriate to impose the scaling relations for E(k) and t (k) in
the Lagrangian frame, but this is embarrassing due to the daunting task of relating Eulerian and
Lagrangian statistics for a flow with a finite correlation time. In the RG and OPE formalism,
the sweeping by the large-scale eddies is related to the contributions of the composite operators
built solely of the velocity field v(x) and its temporal derivatives, as discussed in detail in
[8, 30–32] for the case of the stochastic NS equation. In the Gaussian model with the
spectrum E(k) ∝ k1−2ε̃, those operators become dangerous (that is, their scaling dimensions
become negative) for ε̃ � 1/2, which gives rise to strong infrared divergences in the correlation
functions [51]. This means that the sweeping effects, negligible for small ε̃s, become important
for ε̃ � 1/2. In a Galilean-invariant model, such operators give no contribution to the quantities
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like (1.1), as explained in [30–32] for the NS case. In the Gaussian case, these IR divergences
persist in the structure functions, which provides not only an upper bound for the reliability
of the ε̃–η expansion, but rather a natural bound for the validity of the Gaussian model itself
(which excludes, in particular, the most realistic Kolmogorov’s value ε̃ = 4/3 and its vicinity).
These conclusions agree with the nonperturbative analysis of [75], where the value of ε̃ = 1/2
was reported as the threshold between two qualitatively different regimes for a Lagrangian
particle advected by a Gaussian velocity ensemble. The same threshold value was obtained
earlier in [73] for a two-dimensional strongly anisotropic model. In the next sections, we
will discuss passive advection by a more realistic velocity ensemble, described by the stirred
NS stokes equation; the corresponding model and perturbation theory are manifestly Galilean
covariant.

4.2. RG approach to the stochastic Navier–Stokes equation

The RG approach to the stochastic NS equation, pioneered in [86], has a long history. Here
we briefly recall the treatment of the problem, based on the standard field-theoretic RG and ε

expansion; detailed discussion and more references can be found in [8, 31, 32].
We will discuss the transverse (due to the incompressibility condition ∂ivi = 0) velocity

field satisfying the NS equation with a random driving force

∇t vi = ν0∂
2vi − ∂iP + fi, (4.1)

where ∇t = ∂t + vi∂i is the Lagrangian derivative (cf equation (2.1)), and P and fi are
the pressure and the transverse random force per unit mass (all these quantities depend on
x = {t, x}). We assume for f a Gaussian distribution with zero mean and correlation function

〈fi(x)fj (x
′)〉 = δ(t − t ′)

(2π)d

∫
k�m

dk Pij (k)df (k) exp[ik(x − x′)], (4.2)

where Pij (k) = δij − kikj /k2 is the transverse projector, df (k) is some function of k ≡ |k|
and model parameters, and d is the dimension of the x space. The momentum m = 1/L, the
reciprocal of the integral scale L related to the velocity, provides IR regularization; its precise
form is unessential. For simplicity, we will not distinguish it from the integral scale related to
the scalar noise in (2.2).

The standard RG formalism is applicable to the problem (4.1), (4.2) if the correlation
function of the random force is chosen in the power form

df (k) = D0k
4−d−2ε, (4.3)

where D0 > 0 is the positive amplitude factor and the exponent 0 < ε � 2 plays the role of the
RG expansion parameter, analogous to that played by ε in equation (2.3). The most realistic
value of the exponent is ε = 2: with an appropriate choice of the amplitude, the function (4.3)
for ε → 2 turns to the delta function, df (k) ∝ δ(k), which corresponds to the injection of
energy to the system owing to interaction with the largest turbulent eddies; for a more detailed
justification see [8, 31, 32]. The results of the RG analysis of the model (4.1)–(4.3) are reliable
and internally consistent for small ε, while the possibility of their extrapolation to the real
value ε = 2 and thus their relevance for the real fluid turbulence is far from obvious; see e.g.
[87] for a recent discussion.

The stochastic problem (4.1)–(4.3) is Galilean invariant for all values of the model
parameters, including D0 and ε; this is equally true for the full problem with additional
equations (2.1) and (2.2) for the passively advected scalar field. As a consequence, the
corresponding perturbation theory is manifestly Galilean covariant: all the exact relations
between the correlation functions imposed by the Galilean symmetry (Ward identities) are
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satisfied order by order. The renormalization procedure does not violate the Galilean symmetry,
so that the improved perturbation expansion, obtained with the aid of RG and OPE, remains
covariant. This means, in particular, that the Galilean-invariant quantities, for example, the
equal-time structure functions (1.1), are not affected by the sweeping (here, the latter becomes
important for ε � 3/2), in contrast with the models with synthetic Gaussian ensembles.

In a standard fashion, one can construct the field-theoretic action for the stochastic problem
(4.1)–(4.3), prove its multiplicative renormalizability, derive the corresponding RG equations,
establish existence of an IR-attractive fixed point and systematically calculate various scaling
dimensions as series in ε. According to the general theorem [56], the action functional has
the form

Sv(v′, v) = v′Dvv
′/2 + v′(−∇t + ν0∂

2)v, (4.4)

where Dv is the correlation function (4.2) of the random force fi and all the integrations
over x = {t, x} and summations over the vector indices are understood. The auxiliary vector
field v′

i (which appear in the field-theoretic action similarly to θ ′ in (2.5)) is also transverse,
∂iv

′
i = 0, which allows one to omit the pressure term on the right-hand side of equation (4.4),

as becomes evident after the integration by parts:∫
dt

∫
dx v′

i∂iP = −
∫

dt

∫
dxP(∂iv

′
i ) = 0.

Of course, this does not mean that the pressure contribution can simply be neglected: the field
v′ acts as the transverse projector and selects the transverse part of the expressions to which it
is contracted in equation (4.4).

The role of the coupling constant is played by the parameter g0 ≡ D0
/
ν3

0 ∝ �2ε, cf
equation (2.4) for Kraichnan’s model; � is the characteristic UV momentum scale. Canonical
dimensions of the field vi are the same as given in table 1 for Kraichnan’s ensemble, while the
dimensions of the auxiliary field v′

i are as follows: dk
v′ = d + 1, dω

v′ = −1, dv′ = d − 1. Then
the standard analysis (see section 2.2) shows that, for all d > 2, superficial UV divergences
can only be present in the 1-irreducible function 〈v′v〉1-ir and the corresponding counterterm
reduces to the form v′∂2v. In the special case d = 2, a new UV divergence appears in
the 1-irreducible function 〈v′v′〉1-ir. This case requires special attention, see e.g. [91], and
from now on we assume d > 2. Then the inclusion of the counterterm is reproduced by the
multiplicative renormalization of the action (4.4) with the only independent renormalization
constant:

SvR(v′, v) = v′Dvv
′/2 + v′(−∇t + νZ1∂

2)v, (4.5)

which can be reproduced by the multiplicative renormalization of the parameters:

g0 = gµ2εZg, ν0 = νZν, Zν = Z1, Zg = Z−3
1 . (4.6)

Here g and ν are the renormalized parameters and µ is the reference mass (additional arbitrary
parameter of the renormalized theory). The last relation in (4.6) follows from the absence
of renormalization of the term with Dv in (4.4). The amplitude D0 in the term with Dv

should be expressed in renormalized parameters using the relations D0 = g0ν
3
0 = gµ2εν3. No

renormalization of the fields and the ‘mass’ m = 1/L is needed. The first-order approximation
for Zν is well known (see e.g. [8, 30, 31, 32, 86]), the O(g2) contribution can be found in
[87]. The standard derivation (similar to that of sections 2.3 and 2.4) leads to RG equations
with an IR-stable fixed point.

From the positivity of the canonical dimensions of the fields vi, v
′
i and (2.28), it follows

that, for small ε, critical dimensions of all nontrivial composite operators built of these fields
and their derivatives are strictly positive. Thus, the leading contribution in the operator
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product expansions of the types (2.40) and (2.41) are given by the simplest operator F = 1
with �F = 0, they are finite for mr = 0; contributions of the nontrivial operators only
determine corrections, vanishing for mr → 0. We may conclude that there is no anomalous
scaling (in the sense of (1.3)) for the correlation functions of the velocity field in the model
(4.1)–(4.3) for small ε.

However, numerical simulations of [88, 89] suggest that, as ε increases, the behaviour
of the model (4.1)–(4.3) undergoes a qualitative changeover and the scaling of the velocity
structure functions becomes anomalous. In the RG language, this probably means that certain
Galilean-invariant operators acquire negative critical dimensions for some finite values of
ε, close to the physical value ε = 2. Unfortunately, identification of those operators and
calculation of their dimensions on the basis of the model (4.1)–(4.3) lies beyond the scope of
the present RG technique: the effect takes place for finite, and not small, values of ε, while the
dimensions of the operators are known only in the form of the first terms of the expansions
in ε (some dimensions are known exactly, but they all remain positive for ε � 2). Detailed
discussion of the critical dimensions of Galilean-invariant operators can be found in [8, 31, 32]
and the original papers cited therein. Hopefully, the problem will be solved with the aid of
an alternative perturbation theory. The expansion in 1/d seems very promising, but so far it
has been constructed only for Kraichnan’s model and only to the leading order [22]. Attempts
were made to modify the model by introducing N replicas of the velocity field and to construct
an expansion in 1/N [90], but such modifications are inconsistent with the Galilean symmetry.

4.3. Passive advection by the Navier–Stokes velocity ensemble

It was briefly mentioned in [51] and discussed in detail in [55] that, already for infinitesimal
values of ε, when the velocity statistics is not yet intermittent, the scalar field, advected by
the NS velocity ensemble (4.1)–(4.3), displays a full-scale anomalous scaling behaviour in
the sense of (1.3). The corresponding anomalous exponents can be calculated within an RG
and OPE approach, in a systematic perturbation expansion in the parameter ε from (4.3).
The practical calculation was accomplished to order ε2 (two-loop approximation), including
anisotropic sectors, in [55].

The action field-theoretic functional that corresponds to the full stochastic problem (2.1),
(2.2), (4.1)–(4.3) is

S() = Sv(v′, v) + θ ′Dθθ
′/2 + θ ′(−∇t + u0ν0∂

2)θ, (4.7)

where u0 = κ0/ν0 is the inverse Prandtl number, Dθ is the correlation function (2.2) of the
random noise f in (2.1) and Sv is the action (4.4) for the problem (4.1)–(4.3). For general
d, the only superficially divergent 1-irreducible Green functions are 〈v′v〉1-ir and 〈θ ′θ〉1-ir, the
corresponding counterterms reduce to the forms v′∂2v and θ ′∂2θ . Thus, the renormalized
action has the form

SR() = SvR(v′, v) + θ ′Dθθ
′/2 + θ ′(−∇t + uνZ2∂

2)θ (4.8)

with SvR from (4.5) (due to the passivity of θ , the constant Z1 = Zν in SvR and in relations (4.6)
remains the same as for the model (4.4)) and a new renormalization constant Z2. Relations
(4.6) are augmented by

u0 = uZu, Zu = Z2Z
−1
1 (4.9)

with Zν from (4.5).
The key observation is that the function 〈θ ′θ〉1-ir that determines the renormalization

constant Z2 (and hence the β function for the new dimensionless coupling constant u = κ/ν)
does not involve the correlator Dθ . This means that Z2, and hence βu = D̃µu, are the same as
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in the model without the random noise f in equation (2.1), where they were calculated to first
[92, 93] and second [94] orders; the corresponding RG equations have a unique IR-attractive
fixed point in the physical region of the couplings g > 0 and u > 0. Another consequence,
which is crucial for the following, is that the correlation function of the noise can be taken from
the very beginning in the large-scale form (2.2), and not as a power function like (4.3). Thus,
the canonical dimensions of the fields θ and θ ′ are the same as in table 1 for Kraichnan’s model,
and negative for θ : dθ = −1. This means that the composite fields built of the derivatives of
θ can be dangerous already for infinitesimal values of ε, and the one-loop calculation of the
dimensions �n of the operators (2.32) confirms that they are indeed negative (in fact, they
coincide with (1.5) up to a factor 3/2). Thus, the derivation of the anomalous scaling relations
for the structure functions (1.3) using the RG and OPE techniques (see sections 2.5 and 2.6
for Kraichnan’s model) is equally applicable to the model (2.1), (2.2), (4.1)–(4.3), and the
anomalous exponents are identified with the dimensions �n. In the presence of large-scale
anisotropy, dimensions of the tensor operators (3.12) come into play; they show the same
hierarchy as for Kraichnan’s model, see section 3.2. The calculation of the dimensions �n

and �nl for the model in question to order O(ε2) (two-loop approximation) was accomplished
in [55]; the results differ from their analogues in Kraichnan’s case.

Two main conclusions that can be drown from the RG analysis of the model (2.1), (2.2),
(4.1)–(4.3) are the following.

The critical dimensions of all composite operators (2.32) and (3.12), and therefore the
corresponding anomalous exponents are independent of the forcing, specified by the correlator
(2.2). In particular, this means that they remain unchanged if the stirring noise in equation (2.1)
is replaced by an imposed constant gradient, like e.g. in [15, 16]. The role of the forcing is to
maintain the steady state of the system and thus to provide nonvanishing amplitudes for the
power-law terms with those universal exponents.

This behaviour is similar to that of a passive scalar, advected by the Gaussian velocity
ensemble (2.3) with vanishing correlation time. This observation along with exact resemblance
in the RG and OPE picture for both the models suggests that for the passive scalar advected
by the Navier–Stokes ensemble the concept of zero modes (and thus of statistical conservation
laws) is also applicable, although the corresponding equations are not differential and involve
infinite diagrammatic series.

The exponents depend on the parameter ε in the correlator of the stirring force (4.2) in
the NS equation and on the dimensionality of the x space d.

For a Gaussian velocity ensembles with finite correlation time, they also depend on
the dimensionless ratio of the correlation times of the scalar and velocity fields; see the
discussion in section 4.1. In the case at hand, they could depend, in principle, on the
analogous dimensionless parameter u0 ≡ κ0/ν0, the (inverse) Prandtl number. After solving
the RG equations, this parameter is replaced with the corresponding invariant variable, which
has exactly the meaning of the ratio of the scalar and velocity correlation times (for a detailed
discussion of this point see [51]). However, the analysis of the RG equation shows that in
the IR asymptotic range, this parameter tends to a fixed point, whose coordinate u∗ depends
on d and ε, but not on the initial value u0. As a result, all the dimensions like �nl appear
also independent of u0. In the RG language, the nonuniversality (that is, the dependence
on the ratio u0 or its analogue) of the exponents in the Gaussian model is a consequence
of the infinite degeneracy of the IR-stable fixed point. In the NS model, the fixed point is
unique, and the exponents appear universal. One may conclude that the nonuniversality of
the anomalous exponents in synthetic ensembles, like those discussed in section 4.1, can be
an artefact of their Gaussianity, while for the non-Gaussian velocity ensemble, described by
the Galilean-covariant NS equation, and hence for the real passive advection the anomalous
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exponents are universal, that is, independent of the Prandtl number or the ratio of the scalar
and velocity correlation times.

Possibility of extrapolation of the results obtained for the model (2.1), (2.2), (4.1)–(4.3)
to the physical value ε = 2, their relevance for the real turbulent advection and comparison
with experimental data are also briefly discussed in [55].

5. Passively advected vector fields

Discussion of the anomalous scaling in the previous sections has mostly been concentrated
on the passive scalar advection. Quoting the author of monograph [1], ‘there is considerably
more life in the large-scale transport of vector quantities’ (p 232). New interesting issues
which arise in the passive vector advection (in particular, due to the presence of the stretching
and pressure-like terms) can be studied analytically for the vector analogues of the Kraichnan’s
rapid-change model; see [19, 40–45, 47–49, 54, 95–98] and references therein.

In these papers, the case of transverse passive θi(x) ≡ θi(t, x) vector case was studied.
Below we mostly confine ourselves with the transverse advecting velocity field v(x) ≡ {vi(x)}
with vanishing correlation time; the cases of a non-transverse [42], strongly anisotropic [40]
and a Gaussian field with finite correlation time [54] were also studied.

The advection–diffusion equation for a transverse passive vector field with the most
general form of the nonlinear term permitted by the Galilean symmetry has the form [43]

∂tθi + (vj ∂j )θi − A(θj ∂j )vi + ∂iP = κ0�θi + fi, (5.1)

where A is an arbitrary parameter, P(x) is the analogue of the pressure in equation (4.1), κ0

is the diffusivity, � is the Laplace operator and fi(x) is a transverse Gaussian stirring force
with a correlator similar to (2.2). The velocity is given by the Gaussian ensemble (2.3).

Owing to the transversality conditions, the pressure can be expressed as the solution of
the Poisson equation,

�P = (A − 1)(∂ivj )(∂j θi), (5.2)

so that for general A �= 1 equation (5.1) appears nonlocal in space, similarly to the NS
equation (4.1) and in contrast with the scalar case (2.1).

The general model (5.1) contains some special cases interesting on their own:

(i) Kazantzev–Kraichnan kinematic dynamo model (A = 1), when the pressure term
vanishes and equation (5.1) becomes local;

(ii) the model of passively advected vector impurity (A = 0), which possesses additional
symmetry, θ → θ + const, and has an intrinsic formal resemblance with the stochastic NS
equation;

(iii) linearized NS equation with prescribed statistics of the background field (A = −1). From
the formal point of view, this case shows no special peculiarities in comparison to the
case with general A �= 0.

In these examples, the vector field can have different physical interpretations: magnetic
field, weak perturbation of the prescribed background flow, concentration or density of the
impurity particles with an internal structure. Below we briefly discuss them separately, paying
attention to their relevance to the RG and OPE approach to the turbulence on the whole.

5.1. Passively advected magnetic fields

For the Kazantzev–Kraichnan kinematic dynamo model (A = 1), the field θi(x) is interpreted
as the magnetic field in a conducting fluid with the velocity vi(x). In the full-scale
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magnetohydrodynamical (MHD) problem, the velocity is governed by the NS equation (4.1)
with the additional term quadratic in θ . It arises from the Lorentz force and describes the
effects of the magnetic field on the velocity statistics. The dynamical equation for θi(x) is
obtained from the Ohm’s law for a moving medium and the Maxwell equations neglecting
the displacement current and has the form (5.1) with A = 1; see e.g. [99, 100]. Thus,
the Kazantzev–Kraichnan model can be viewed as a simplified version to the full MHD
problem, in which the Lorentz force is neglected (no feedback on the velocity field, kinematic
approximation) and the NS equation is replaced with the Gaussian ensemble (2.3).

This model was extensively studied in connection with the dynamo effect, generation of
the large-scale magnetic field due to the energy of turbulent motion [5, 99, 100], which leads
to the instability of the stationary state, at least in the kinematic (linear in θ ) approximation.
For the ensemble (2.3), this effect takes place only for finite ε (ε � 1 if d = 3 [47]) and
lies beyond the scope of the perturbation theory; for a detailed discussion see [47, 95–97]
and references therein. It is worth noting that the full-scale MHD problem within the RG
formalism was studied in [101, 102], see also discussion and more references in [8, 32].

For smaller ε, the steady state is stable and the issue of anomalous scaling can be
addressed. The model has no symmetry with respect to the shift of the field θ , so that the
composite operators of the forms θn have nontrivial scaling dimensions. As a consequence,
the relevant quantities that demonstrate pure scaling behaviour are not the structure functions
but the correlation functions of the powers of θ , cf section 3.1 for the scalar density field.
This is equally true for the general model (5.1) with the important exception A = 0; see
section 5.2. The anomalous scaling in such models occurs already for the pair correlator.
The corresponding anomalous exponent for the magnetic case was found exactly, using the
zero-mode techniques, in [47]; generalizations to anisotropic sectors were derived in [48, 49].

The RG and OPE approach presented in section 2 for the scalar case is directly extended
to the general vector model (5.1) and, in particular, to the special case A = 1. The relations
similar to (3.7) can be derived for the equal-time pair correlation functions of the powers of
θ ; the corresponding anomalous exponents �n are identified with the scaling dimensions of
operators θn with various arrangements of tensor indices. They were derived only to first order
in ε and for general d for the scalars Fn = (θiθi)

n [37] and tensors Fn,l = (θiθi)
pθi1 · · · θil

with n = 2p + l [41]; generalizations to the compressible velocity field [42] and the general
A [43] were also obtained. For general d and A, the dimension of the tensor Fn,l is given by

�n,l = nε

2
+

εA2(2n(n − 1) − (d + 1)(n − l)(d + n + l − 2))

2(d2 + A2 + Ad − 3)
+ O(ε); (5.3)

it depends explicitly on A and for A = 1 coincides, of course, with the result derived earlier
for the magnetic case.

The analytical results, obtained within both the zero-mode and RG techniques, show
that the general pattern of the anomalous scaling for the magnetic vector model, as well
as for the general case with A �= 0, is essentially the same as for the scalar models. In
particular, the anisotropic contributions (activated in the presence of large-scale anisotropy)
satisfy hierarchical relations analogous to (3.11) and (3.15); compressibility enhances the
intermittency and the penetration of anisotropy towards the smaller scales, etc; cf section 3.2.

5.2. The A = 0 model: effects of pressure and mixing of operators

The passive vector model (5.1) with A = 0 was introduced in [44, 98] and further studied in
[45, 103–105].

The authors of [98] were motivated by the observation that, for A = 0 (and in fact
for all A �= 1), the dynamical equation (5.1) includes a nonlocal pressure term, so that the
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corresponding exact equations for the equal-time correlation functions (which can also be
derived for the vector case) are not differential (like for the scalar or magnetic cases) but
integro-differential. In this respect, they resemble the self-consistency equations for the real
NS model; hence the term ‘linear pressure model’ used in [98]. As a result, substituting self-
similar expressions for the zero modes into the equations leads to divergences, in contrast with
differential equations for the local models. Nevertheless, the authors of [98] have shown that
the anomalous exponents for the second-order structure function S2 can be derived from those
equations and graphically presented the results for d = 3 (including anisotropic sectors). The
calculation procedure of divergent integrals, employed in [98], involves analytical continuation
from the region of convergence, and is therefore close to the concept of analytical regularization
(see e.g. [8]).

The results of [98] were verified and augmented in [45]. Starting from the Dyson–Wyld
equations and the explicit SO(d) covariant decomposition for the pair correlation function,
those authors presented the general recipe of deriving nonperturbative exact equations and
explicitly obtained decoupled transcendental equations for the scaling exponents, related to
different irreducible representations, in d dimensions. This allows one to give a global
description of the behaviour of the full set of solutions in isotropic and anisotropic sectors, and
to derive analytical results in all sectors to order O(ε) and for ε = 2 in d dimensions. This
picture was illustrated by a few nonperturbative solutions obtained numerically in two and
three dimensions for the isotropic and low-order anisotropic sectors; for some of them, results
of [98] were corrected. In contradiction with [98], the zero-mode equations were written in
momentum representation. In practical calculation of the resulting integrals, the procedure
based on the dimensional regularization prescription was applied and justified.

From the RG viewpoints, the model with A = 0 differs seriously from the general vector
case with A �= 0 (as well as from the scalar model), where the anomalous exponents were
identified with scaling dimensions of individual composite operators. Here, the anomalous
scaling is related with the dimensions of families of composite operators, which mix heavily
in renormalization. In this respect, the model appears much closer to the nonlinear NS
equation, where the inertial-range behaviour of structure functions is believed to be related
with the Galilean-invariant (and hence built of the velocity gradients) operators, which mix in
renormalization (see the discussion in section 4.2 and [31, 32]). This deep formal analogy was
the main motivation for the authors of [44, 45, 103–105] who studied the anomalous scaling of
the higher order structure functions in the model with A = 0 within the RG and OPE context.

The RG and OPE approach presented in section 2 for the scalar case can be extended
to the model in question; the corresponding RG equation has an IR-attractive fixed point (it
becomes negative for d2 < 3, which is related to the instability of the model for such d; as
discussed in the next subsection for general A). Owing to the symmetry θ → θ + const, which
distinguishes the model with A = 0 from the general case, the anomalous scaling reveals itself
in the structure functions

S2n(r) ≡ 〈[θr(t, x) − θr(t, x′)]2n〉, (5.4)

where θr ≡ θiri/r is the component of the passive field along the direction r = x − x′, an
analogue of the stream-wise component of the turbulent velocity field in real experiments. Like
for the scalar case, and in contrast to the vector case with A �= 0, the anomalous exponents for
S2n are determined by the scaling dimensions of the composite operators built of the gradients
of the passive field and having the form (∂θ∂θ)n.

For n = 1, there are two such operators:

F1 = ∂iθj ∂iθj , F2 = ∂iθj ∂j θi . (5.5)
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For the transverse field θ , the second operator reduces to a total derivative, F2 = ∂i∂j (θj θi),
and its dimension �2 = 2+2�θ = ε does not appear on the right-hand side of equation (2.41).
Like for the scalar case (see the remark below equation (2.35)), the dimension �1 = 0 is found
exactly with the aid of certain Schwinger-type equation [45]. So the second-order function is
not anomalous: S2 ∝ r2−ε.

For n = 2, there are six independent monomials of the desired form, all of which can be
obtained from the fourth rank operator 

mnps

ijkl ≡ ∂iθm∂j θn∂kθp∂lθs by various contractions of
the tensor indices:

F1 = 
ijkl

j ilk, F2 = iikk
jj ll , F3 = 

ijkk

jill ,

F4 = 
iijk

jkll , F5 = 
iijj

klkl, F6 = 
iijk

j lkl .
(5.6)

At first glance, it seems that one can add another independent monomial, F7 = 
ijkl

lijk , but in
fact it reduces to F1 up to a total derivative:

3F1 − 6F7 = ∂i

[−6θk
spi

ksp + 3θk
pis

skp + 2θi
kps

skp

]
, (5.7)

where the notation is analogous to that in (5.6).
Expressions (5.6) and (5.7) illustrate the following new serious problems, which the

vector model with A = 0 shares with the nonlinear NS equation, and which distinguish them
both from the scalar case.

(i) In contrast to the single operator Fn = (∂iθ∂iθ)n in (2.32) for the scalar field,
now one has a family of operators with a given n. They mix in renormalization, and the
corresponding renormalization matrix ZF is neither diagonal nor triangular. The leading
anomalous exponent is given by the minimal eigenvalue of the corresponding matrix �F of
critical dimensions in (2.28); the other eigenvalues determine the subleading corrections for
(mr) → 0 in representations (2.41).

(ii) The number of relevant operators increases rapidly as n grows; such families should be
considered separately for different n. Thus, there is little hope to derive an explicit analytical
expression for the anomalous exponent �n as a function of n and d, similar to (1.5) for the
scalar case (this appears possible, however, for d = 2 [104, 105]).

(iii) Not all the monomials (∂θ∂θ)n for a given n appear independent. There are nontrivial
linear relations between them, which allow one to represent some monomials as certain linear
combinations of the others, probably up to total derivatives. In addition to relations valid
for all d, there are special relations for integer (most interesting) dimensions. The number
of such relations increases when n grows or (integer) d decreases. Before calculating the
matrices ZF and �F , one has to identify the independent monomials and explicitly eliminate
the others; otherwise, meaningless spurious eigenvalues (corresponding to the operators which
look nontrivial but in fact vanish) will appear among the full set of eigenvalues. This problem
was thoroughly investigated in [104] for d = 2 and in [103] for d = 3.

For the set (5.6), the matrix �F was derived analytically to order O(ε) (one-loop
approximation) and any d in [44]; see also [45]. Only one eigenvalue, however, can be
found analytically for general dimension; the other should be calculated numerically for a
fixed d. One of them appears negative: �2 = −0.55ε for d = 3. This means that the function
S4 shows anomalous scaling. From the Hölder inequalities for the functions S2n it then follows
that they are anomalous, so that negative dimensions must be present among the eigenvalues
for the sets (∂θ∂θ)n for all n � 2. They were calculated (in the one-loop approximation and
for d = 3) to the order n as high as n = 9 in [103]. In order to perform this calculation, the
author of [103] had to identify the independent relevant monomials for d = 3, which is itself
an interesting mathematical problem solved in an elegant way. On the other hand, elimination



Renormalization group and anomalous scaling in turbulent advection 7859

−60

−50

−40

−30

−20

−10

0

1 2 3 4 5 6n

∆(11)

Figure 4. Coefficients �(11) in the O(ε/d) approximation of the critical dimensions of the
operators (∂θ)2n in the scalar (solid curve) and vector (thick dots) models. Dashed lines denote
monotonous branches of the critical dimensions in the vector case.

of redundant monomials drastically reduces the number of the relevant operators and makes
the calculation for high n feasible.

The analysis of the anomalous exponents in the O(ε) approximation simplifies for large d
[45]. To avoid possible confusion, it should be stressed that [45] deals with the 1/d expansion
of a dimension � in its O(ε) approximation, that is, the 1/d expansion of the coefficient
�(1)(d) in the representation � = ε�(1)(d) + O(ε2).

It was shown in [45] that, for d → ∞, the negative eigenvalues can be only related to
the subset of monomials (∂θ∂θ)n in which the vector indices of derivatives are contracted
only with each other, and consequently, the indices of fields θ are contracted only with other
θs and not with derivatives. In order to find these eigenvalues, it is sufficient to consider the
blocks of the full matrices ZF and �F which correspond to such operators. Of course, this
drastically reduces the number of relevant operators in comparison to the general case: there
are 2 such operators for n = 2, 3 for n = 3, 5 for n = 4, 7 for n = 5, 11 for n = 6 [45], 15
for n = 7 and 22 for n = 8 [106]. The results for the corresponding eigenvalues, derived in
[45] to order n = 6, confirm and refine the general picture of the anomalous scaling in the
vector model: in the full set of operators (∂θ∂θ)k with k � n, the most dangerous operator
(that is, the operator with the lowest negative dimension) belongs to the subset with k = n,
and its dimension �n < 0 decreases faster than linearly with n. As functions of n, these
leading eigenvalues lie on a well-defined curve, which, however, is not proportional to the
factor n(n − 1) as it was for the scalar case, cf (1.5). For a given n, the anomalous exponent
for the vector model is always ‘less negative’ than its counterpart for the scalar case. The
leading and the next-to-leading correction exponents also lie on well-defined curves, while
more distant correction exponents seem to form chaotic patterns, as illustrated by figure 4
taken from [45]. There, the coefficients �(11) in the double expansion for the eigenvalues are
shown: � = �(11)ε/d+ corrections.

All these properties, which can be important in the analysis of the stochastic NS problem,
become even more pronounced if the results for n = 7 and 8 [106] are taken into consideration.
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The full analytical treatment of the problem appears possible for d = 2, where the
transverse vector field can always be represented in the form θi = εij ∂jψ , where εij is the
antisymmetric Levi-Civita pseudotensor and ψ(x) is a scalar function, which again reduces
the number of independent operators. In [104], the independent monomials were identified,
the matrix �F was reduced to a triangular form and the corresponding eigenvalues were
calculated analytically as functions of n to the order O(ε). The anomalous exponents (minimal
eigenvalues) coincide with their counterparts for the scalar model (1.5), but this is an artefact
of the one-loop approximation. In [105], it was shown that the matrix �F becomes diagonal
to all orders, if the basis operators are not taken as monomials but as powers of only two
operators: the local dissipation rate of scalar fluctuations and the enstrophy. The physical
meaning of this fact and its relevance for the two-dimensional stochastic NS problem remain
to be understood. The authors of [105] performed the O(ε2) calculation of the anomalous
exponents; the results differ from the scalar case.

5.3. Passive vector model with general A

The passive vector model (5.1) with the velocity ensemble (2.3) was introduced and studied
in [43]; generalization to the Gaussian ensemble with compressibility and finite correlation
time was studied in [54]. An advantage of the general model is the possibility to control the
pressure contribution and thus study its effects on the inertial-range behaviour. It can also be
naturally justified within the multiscale technique, as a result of the vertex renormalization [1].
The model exhibits some interesting instabilities, which can be studied nonperturbatively and
can be viewed as generalizations of the kinematic dynamo effect in the model with A = 1;
see section 5.1.

Like for the case with A = 0, exact transcendental equations can be derived for the
exponents ζ2l describing the scaling behaviour of the lth anisotropic ‘shell’ of second-order
structure functions S2 in the representation; see equations (3.9) and (3.10). Exact solution
can only be obtained for the magnetic case A = 1, when the model becomes local and the
equations become algebraic. They can be solved numerically or analytically as series in ε or
1/d. For the exponent of the isotropic shell, one obtains

ζ20 = −A2ε +
A2ε

d

{
(A − 1)�(1 + ε/2)�(1 + (A2 − 1)ε/2)

�(1 + A2ε/2)

− ε(A + 1)(A3ε − A2ε + Aε + A − ε + 1)

(A2ε − ε + 2)

}
+ O(1/d2)

= − ε
A2(d − 1)(d + 2)

(d2 + A2 + Ad − 3)
− ε2A2(d − 1)

2d(d2 + A2 + Ad − 3)2

×{d3(A + 1)2 + (d2 − 2d + 4)(3A2 + 2A + 3)} + O(ε3). (5.8)

In order ε3, the function ψ ′(d/2) with ψ(z) ≡ d ln �(z)/dz occurs in the ε expansion; results
for general l in the order O(ε) are given in [43].

The anomalous scaling for the higher order correlation functions is essentially the same
as for the magnetic case, see discussion in section 5.1 and expression (5.3) for the anomalous
exponents.

Expressions (5.3) and (5.8) show no hint of misbehaviour in the vicinity of the point
A = 1, where the pressure term (5.2) vanish and the model (5.1) becomes local; the exponents
can regularly be expanded in the parameter (A−1), which measures the degree of nonlocality.
This means that there is no qualitative difference between the local and nonlocal cases.
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On the other hand, exponents (5.3) and (5.8) diverge for (d2 + A2 + Ad − 3) = 0 (this
can happen only for d � 2, and for d = 2 only for A = −1). From the RG viewpoints,
this is a consequence of the fact that for (d2 + A2 + Ad − 3) < 0 the coordinate of the fixed
point becomes negative and the solution of the RG equation has no well-defined limit in the
IR range. In a more physical language, in that region of parameters the effective diffusivity
coefficient is negative at large scales and the system becomes unstable with respect to any
small perturbation. For A = 0, this happens if (d2 − 3) < 0, as already mentioned in
section 5.2.

Another interesting instability can be revealed by the nonperturbative numerical solution
of the exact transcendental equation for the exponent ζ20. There are infinitely many solutions
of those equations; some of them are ‘admissible’ in the terminology of [21, 22] and describe
the leading term of the IR behaviour of the pair correlator and the corrections to it, small
for (mr) → 0. The other solutions are not admissible and, according to [22], describe the
opposite limit (mr) → ∞.

It turns out that the exact real solution for the leading admissible exponent ζ20 ceases to
exist in some region of the parameters A, d and ε: it coalesces with the closest inadmissible
solution and both become complex [43]. For the magnetic case (A = 1 and d = 3),
this happens at ε = 1 and is interpreted as the dynamo effect, an instability of the steady
state leading to the exponential growth of the pair correlation function [47, 48]. Thus, the
analysis of the general model gives the boundaries of the dynamo instability in the extended
space of parameters A, d and ε. In this connection, it is worth noting that coalescence and
complexification of nonperturbative exponents of the pair correlation functions takes place for
the model with A = 0 [45, 98]. However, in contrast with the situation discussed above, the
coalescence occurs only in anisotropic sectors and only for nonleading admissible exponents,
and one can argue that the steady state remains stable. If this is true, the inertial-range behaviour
in the corresponding sectors will include oscillations on the power-like background; cf the
discussion of expression (3.22) in section 3.2.

To the best of our knowledge, passive advection of tensor fields has not yet been studied
for Kraichnan’s ensemble within the RG and OPE approach. From the microscopical point of
view, advection–diffusion equations of the forms (2.1), (3.1) and (3.2) describe random walks
and transfer of point-like particles. Anomalous scaling for the passive advection of extended
objects (polymers or membranes) was studied in [46].

6. Conclusion

Let us briefly summarize the lessons we have learned from the RG and OPE theory of
anomalous scaling of passively advected fields.

The zero-mode approach to Kraichnan’s rapid-change model gave the first analytic
derivation of anomalous scaling based on a microscopical dynamical model. Existence of
analytical results (exact solutions, regular perturbation schemes) and accurate numerical
simulations allows one to verify and refine classical phenomenological ideas, like the
hypothesis on the restored local isotropy of the inertial-range turbulence, and to discuss
the issues interesting within the general context of fully developed turbulence: universality
and saturation of anomalous exponents, effects of compressibility, anisotropy and pressure,
persistence of the large-scale anisotropy and hierarchy of anisotropic contributions, and so on.

Application of the field-theoretic RG and OPE methods gives an alternative derivation of
the anomalous scaling and allows one to calculate the anomalous exponents in a systematic
perturbation expansions, similar to the ε expansions in the models of critical phenomena. The
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key difference with the latter is the existence in the corresponding field-theoretic models of
infinite number of ‘dangerous’ composite fields (operators) with negative critical dimensions,
which are identified with the anomalous exponents. This gives rise to multiscaling—existence
of infinite set of independent anomalous exponents.

Thus, the RG symmetry is not only consistent with multiscaling (in contrast to what was
sometimes claimed) but can also be successfully used to establish its existence and to calculate
the corresponding infinite set of the anomalous exponents.

Besides the calculational efficiency, an important advantage of the RG approach is
its relative universality: it is not restricted to Gaussian velocity ensembles with vanishing
correlation time and can also be applied to the case of finite correlation time or non-Gaussian
advecting field governed by the stirred NS equation. This is an important step towards the
theoretical description of the anomalous scaling for the turbulent velocity field itself.

In spite of the progress achieved in the field of passive advection, systematic derivation
of the anomalous exponents on the basis of the stochastic Navier–Stokes equation remains an
open question. One can hope that the RG and OPE approach and the concept of dangerous
composite fields, combined by an appropriate perturbation theory (1/d expansion?) or some
nonperturbative methods (exact renormalization group?, instanton calculus?) will give the
satisfactory solution of this interesting problem.
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[69] Gawȩdzki K and Vergassola M 2000 Physica D 138 63
[70] Chertkov M, Kolokolov I and Vergassola M 1977 Phys. Rev. E 56 5483

Chertkov M, Kolokolov I and Vergassola M 1998 Phys. Rev. Lett. 80 512
[71] Shraiman B I and Siggia E D 1994 Phys. Rev. E 49 2912

Shraiman B I and Siggia E D 1995 C. R. Acad. Sci., Paris II 321 279
Shraiman B I and Siggia E D 1996 Phys. Rev. Lett. 77 2463

[72] Andersen K H and Muratore Ginanneschi P 1999 Phys. Rev. E 60 6663
[73] Avellaneda M and Majda A 1990 Commun. Math. Phys. 131 381

Avellaneda M and Majda A 1992 Commun. Math. Phys. 146 139
Zhang Q and Glimm J 1992 Commun. Math. Phys. 146 217

[74] Majda A 1993 J. Stat. Phys. 73 515
Horntrop D and Majda A 1994 J. Math. Sci. Univ. Tokyo 1 23
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